Multiple positive solutions for nonlinear coupled fractional Laplacian system with critical exponent

被引:5
作者
Zhen, Maoding [1 ,2 ]
He, Jinchun [1 ,2 ]
Xu, Haoyuan [1 ,2 ]
Yang, Meihua [1 ,2 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan, Hubei, Peoples R China
[2] Huazhong Univ Sci & Technol, Hubei Key Lab Engn Modeling & Sci Comp, Wuhan, Hubei, Peoples R China
来源
BOUNDARY VALUE PROBLEMS | 2018年
关键词
Fractional Laplacian; Critical exponent; Ground state solution; Higher energy solution; EQUATIONS; REGULARITY; OPERATOR; POWER;
D O I
10.1186/s13661-018-1016-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the following critical system with fractional Laplacian: {(-Delta)(s)u + lambda(1)u = mu(1)vertical bar u vertical bar(2)*(-2)u + alpha gamma/2*vertical bar u vertical bar(alpha-2)u vertical bar v vertical bar(beta) in Omega, (-Delta)(s)v + lambda(2)v = mu(2)vertical bar v vertical bar(2)*(-2)v + beta gamma/2*vertical bar u vertical bar(alpha)vertical bar v vertical bar(beta-2)v in Omega, u = v = 0 in R-N\Omega, where (-Delta)(s) is the fractional Laplacian, 0 < s < 1, mu(1), mu(2) > 0, 2* = 2N/N-2s is a fractional critical Sobolev exponent, N > 2s, 1 < alpha, beta < 2, alpha + beta = 2*, Omega is an open bounded set of R-N with Lipschitz boundary and lambda(1), lambda(2) > -lambda(1,s)(Omega), lambda(1,s)(Omega) is the first eigenvalue of the non-local operator (-Delta)(s) with homogeneous Dirichlet boundary datum. By using the Nehari manifold, we prove the existence of a positive ground state solution of the system for all gamma > 0. Via a perturbation argument and using the topological degree and a pseudo-gradient vector field, we show that this system has a positive higher energy solution. Then the asymptotic behaviors of the positive ground state solutions are analyzed when gamma -> 0.
引用
收藏
页数:25
相关论文
共 31 条
  • [1] Phase transition with the line-tension effect
    Alberti, G
    Bouchitte, G
    Seppecher, P
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1998, 144 (01) : 1 - 46
  • [2] On systems of elliptic equations involving subcritical or critical Sobolev exponents
    Alves, CO
    de Morais, DC
    Souto, MAS
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 42 (05) : 771 - 787
  • [3] A critical fractional equation with concave convex power nonlinearities
    Barrios, B.
    Colorado, E.
    Servadei, R.
    Soria, F.
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2015, 32 (04): : 875 - 900
  • [4] On some critical problems for the fractional Laplacian operator
    Barrios, B.
    Colorado, E.
    de Pablo, A.
    Sanchez, U.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (11) : 6133 - 6162
  • [5] Ben Abdallah N., 2011, ARCH RATION MECH AN, V4, P493
  • [6] A RELATION BETWEEN POINTWISE CONVERGENCE OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS
    BREZIS, H
    LIEB, E
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) : 486 - 490
  • [7] Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, and Hamiltonian estimates
    Cabre, Xavier
    Sire, Yannick
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2014, 31 (01): : 23 - 53
  • [8] An extension problem related to the fractional Laplacian
    Caffarelli, Luis
    Silvestre, Luis
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (7-9) : 1245 - 1260
  • [9] Variational problems with free boundaries for the fractional Laplacian
    Caffarelli, Luis A.
    Roquejoffre, Jean-Michel
    Sire, Yannick
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2010, 12 (05) : 1151 - 1179
  • [10] Positive least energy solutions and phase separation for coupled Schrodinger equations with critical exponent: higher dimensional case
    Chen, Zhijie
    Zou, Wenming
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 52 (1-2) : 423 - 467