GLOBAL UNIQUENESS FOR THE CALDERON PROBLEM WITH LIPSCHITZ CONDUCTIVITIES

被引:61
作者
Caro, Pedro [1 ,2 ]
Rogers, Keith M. [3 ]
机构
[1] BCAM, Bilbao 48009, Spain
[2] Basque Fdn Sci, Ikerbasque, Bilbao 48011, Spain
[3] CSIC UAM UC3M UCM, Inst Ciencias Matemat, Madrid 28049, Spain
来源
FORUM OF MATHEMATICS PI | 2016年 / 4卷
基金
欧盟地平线“2020”;
关键词
BOUNDARY; CONTINUATION; OPERATOR; THEOREM;
D O I
10.1017/fmp.2015.9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove uniqueness for the Calderon problem with Lipschitz conductivities in higher dimensions. Combined with the recent work of Haberman, who treated the three-and four-dimensional cases, this confirms a conjecture of Uhlmann. Our proof builds on the work of Sylvester and Uhlmann, Brown, and Haberman and Tataru who proved uniqueness for C-1-conductivities and Lipschitz conductivities sufficiently close to the identity.
引用
收藏
页码:1 / 28
页数:28
相关论文
共 28 条