GLOBAL UNIQUENESS FOR THE CALDERON PROBLEM WITH LIPSCHITZ CONDUCTIVITIES

被引:62
作者
Caro, Pedro [1 ,2 ]
Rogers, Keith M. [3 ]
机构
[1] BCAM, Bilbao 48009, Spain
[2] Basque Fdn Sci, Ikerbasque, Bilbao 48011, Spain
[3] CSIC UAM UC3M UCM, Inst Ciencias Matemat, Madrid 28049, Spain
基金
欧盟地平线“2020”;
关键词
BOUNDARY; CONTINUATION; OPERATOR; THEOREM;
D O I
10.1017/fmp.2015.9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove uniqueness for the Calderon problem with Lipschitz conductivities in higher dimensions. Combined with the recent work of Haberman, who treated the three-and four-dimensional cases, this confirms a conjecture of Uhlmann. Our proof builds on the work of Sylvester and Uhlmann, Brown, and Haberman and Tataru who proved uniqueness for C-1-conductivities and Lipschitz conductivities sufficiently close to the identity.
引用
收藏
页码:1 / 28
页数:28
相关论文
共 28 条
[1]   SINGULAR SOLUTIONS OF ELLIPTIC-EQUATIONS AND THE DETERMINATION OF CONDUCTIVITY BY BOUNDARY MEASUREMENTS [J].
ALESSANDRINI, G .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1990, 84 (02) :252-272
[2]  
[Anonymous], 1998, P INT C MATH BERL
[3]  
[Anonymous], 1963, Bull. Acad. Polonaise Sci.
[4]  
Astala K., ANAL PDE IN PRESS
[5]   Calderon's inverse conductivity problem in the plane [J].
Astala, Kari ;
Paivarinta, Lassi .
ANNALS OF MATHEMATICS, 2006, 163 (01) :265-299
[6]  
Brown R. M., 2001, Journal of Inverse and ILL-Posed Problems, V9, P567
[7]   Uniqueness in the inverse conductivity problem for conductivities with 3/2 derivatives in Lp, p>2n [J].
Brown, RM ;
Torres, RH .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2003, 9 (06) :563-574
[8]   Global uniqueness in the impedance-imaging problem for less regular conductivities [J].
Brown, RM .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1996, 27 (04) :1049-1056
[9]  
Calderón AP, 2006, COMPUT APPL MATH, V25, P133, DOI 10.1590/S1807-03022006000200002
[10]   Stability of the Calderon problem for less regular conductivities [J].
Caro, Pedro ;
Garcia, Andoni ;
Reyes, Juan Manuel .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (02) :469-492