Personalized Radiotherapy Planning Based on a Computational Tumor Growth Model

被引:40
作者
Le, Matthieu [1 ]
Delingette, Herve [1 ]
Kalpathy-Cramer, Jayashree [2 ]
Gerstner, Elizabeth R. [3 ]
Batchelor, Tracy [3 ]
Unkelbach, Jan [4 ,5 ]
Ayache, Nicholas [1 ]
机构
[1] Inria Sophia Antipolis, Asclepios Project, F-06902 Sophia Antipolis, France
[2] Harvard Mit Div Hlth Sci & Technol, Martinos Ctr Biomed Imaging, Charlestown, MA 02129 USA
[3] Massachusetts Gen Hosp, Dept Neurol, Boston, MA 02114 USA
[4] Massachusetts Gen Hosp, Dept Radiat Oncol, Boston, MA 02144 USA
[5] Harvard Med Sch, Boston, MA 02144 USA
基金
欧洲研究理事会;
关键词
Radiotherapy planning; computational tumor growth model; personalization; uncertainty; segmentation; glioblastoma; MATHEMATICAL-MODEL; GLIOBLASTOMA; INVASION; DIFFUSION; PROLIFERATION; RESECTION; EQUATION; GLIOMAS;
D O I
10.1109/TMI.2016.2626443
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this article, we propose a proof of concept for the automatic planning of personalized radiotherapy for brain tumors. A computational model of glioblastoma growth is combined with an exponential cell survival model to describe the effect of radiotherapy. The model is personalized to the magnetic resonance images (MRIs) of a given patient. It takes into account the uncertainty in the model parameters, together with the uncertainty in the MRI segmentations. The computed probability distribution over tumor cell densities, together with the cell survival model, is used to define the prescription dose distribution, which is the basis for subsequent Intensity Modulated Radiation Therapy (IMRT) planning. Depending on the clinical data available, we compare three different scenarios to personalize the model. First, we consider a single MRI acquisition before therapy, as it would usually be the case in clinical routine. Second, we use two MRI acquisitions at two distinct time points in order to personalize the model and plan radiotherapy. Third, we include the uncertainty in the segmentation process. We present the application of our approach on two patients diagnosed with high grade glioma. We introduce two methods to derive the radiotherapy prescription dose distribution, which are based on minimizing integral tumor cell survival using the maximum a posteriori or the expected tumor cell density. We show how our method allows the user to compute a patient specific radiotherapy planning conformal to the tumor infiltration. We further present extensions of the method in order to spare adjacent organs at risk by re-distributing the dose. The presented approach and its proof of concept may help in the future to better target the tumor and spare organs at risk.
引用
收藏
页码:815 / 825
页数:11
相关论文
共 31 条
[1]  
[Anonymous], 2002, MATH BIOL
[2]   Invasion and proliferation kinetics in enhancing gliomas predict IDH1 mutation status [J].
Baldock, Anne L. ;
Yagle, Kevin ;
Born, Donald E. ;
Ahn, Sunyoung ;
Trister, Andrew D. ;
Neal, Maxwell ;
Johnston, Sandra K. ;
Bridge, Carly A. ;
Basanta, David ;
Scott, Jacob ;
Malone, Hani ;
Sonabend, Adam M. ;
Canoll, Peter ;
Mrugala, Maciej M. ;
Rockhill, Jason K. ;
Rockne, Russell C. ;
Swanson, Kristin R. .
NEURO-ONCOLOGY, 2014, 16 (06) :779-786
[3]  
Barani IJ, 2015, CANCER TREAT RES, V163, P49, DOI 10.1007/978-3-319-12048-5_4
[4]   Realistic simulation of the 3-D growth of brain tumors in MR images coupling diffusion with biomechanical deformation [J].
Clatz, O ;
Sermesant, M ;
Bondiau, PY ;
Delingette, H ;
Warfield, SK ;
Malandain, G ;
Ayache, N .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2005, 24 (10) :1334-1346
[5]   Toward Patient-Specific, Biologically Optimized Radiation Therapy Plans for the Treatment of Glioblastoma [J].
Corwin, David ;
Holdsworth, Clay ;
Rockne, Russell C. ;
Trister, Andrew D. ;
Mrugala, Maciej M. ;
Rockhill, Jason K. ;
Stewart, Robert D. ;
Phillips, Mark ;
Swanson, Kristin R. .
PLOS ONE, 2013, 8 (11)
[6]   CERR: A computational environment for radiotherapy research [J].
Deasy, JO ;
Blanco, AI ;
Clark, VH .
MEDICAL PHYSICS, 2003, 30 (05) :979-985
[7]   GLISTR: Glioma Image Segmentation and Registration [J].
Gooya, Ali ;
Pohl, Kilian M. ;
Bilello, Michel ;
Cirillo, Luigi ;
Biros, George ;
Melhem, Elias R. ;
Davatzikos, Christos .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2012, 31 (10) :1941-1954
[8]   The evolution of mathematical Modeling of glioma proliferation and invasion [J].
Harpold, Hana L. P. ;
Alvord, Ellsworth C., Jr. ;
Swanson, Kristin R. .
JOURNAL OF NEUROPATHOLOGY AND EXPERIMENTAL NEUROLOGY, 2007, 66 (01) :1-9
[9]   Adaptive IMRT using a multiobjective evolutionary algorithm integrated with a diffusion-invasion model of glioblastoma [J].
Holdsworth, C. H. ;
Corwin, D. ;
Stewart, R. D. ;
Rockne, R. ;
Trister, A. D. ;
Swanson, K. R. ;
Phillips, M. .
PHYSICS IN MEDICINE AND BIOLOGY, 2012, 57 (24) :8271-8283
[10]   Extrapolating glioma invasion margin in brain magnetic resonance images: Suggesting new irradiation margins [J].
Konukoglu, Ender ;
Clatz, Olivier ;
Bondiau, Pierre-Yves ;
Delingette, Herve ;
Ayache, Nicholas .
MEDICAL IMAGE ANALYSIS, 2010, 14 (02) :111-125