STRONGLY FULLY INVARIANT-EXTENDING MODULAR LATTICES

被引:1
作者
Albu, Toma [1 ]
Kara, Yeliz [2 ]
Tercan, Adnan [3 ]
机构
[1] Romanian Acad, Simion Stoilow Inst Math, POB 1 764, RO-010145 Bucharest 1, Romania
[2] Bursa Uludag Univ, Dept Math, TR-16059 Bursa, Turkey
[3] Hacettepe Univ, Dept Math, Beytepe Campus, TR-06532 Ankara, Turkey
关键词
Modular lattice; upper continuous lattice; linear morphism of lattices; fully invariant element; fully invariant-extending lattice; strongly fully invariant-extending lattice;
D O I
10.2989/16073606.2020.1861488
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is a natural continuation of our previous joint paper [Albu, Kara, Tercan, Fully invariant-extending modular lattices, and applications (I), J. Algebra 517 (2019), 207-222], where we introduced and investigated the notion of a fully invariant-extending lattice, the latticial counterpart of a fully invariant-extending module. In this paper we introduce and investigate the latticial counter-part of the concept of a strongly FI-extending module defined by Birkenmeier, Park, Rizvi (2002) as a module M having the property that every fully invariant submodule of M is essential in a fully invariant direct summand of M. Our main tool in doing so, is again the very useful concept of a linear morphism of lattices introduced in the literature by Albu and Iosif (2013).
引用
收藏
页码:357 / 367
页数:11
相关论文
共 50 条
[31]   On the finiteness problem for classes of modular lattices [J].
Christian Herrmann .
Algebra universalis, 2019, 80
[32]   On the finiteness problem for classes of modular lattices [J].
Herrmann, Christian .
ALGEBRA UNIVERSALIS, 2019, 80 (01)
[33]   The variety generated by planar modular lattices [J].
Graetzer, G. ;
Quackenbush, R. W. .
ALGEBRA UNIVERSALIS, 2010, 63 (2-3) :187-201
[34]   Strongly Modular Subgroup in Finite Group [J].
禹建丽 ;
焦东武 ;
曹中军 .
数学季刊, 1994, (01) :104-105
[35]   Distributivity for Upper Continuous and Strongly Atomic Lattices [J].
Aazarz, Marcin ;
Siemienczuk, Krzysztof .
STUDIA LOGICA, 2017, 105 (03) :471-478
[36]   Distributivity for Upper Continuous and Strongly Atomic Lattices [J].
Marcin Łazarz ;
Krzysztof Siemieńczuk .
Studia Logica, 2017, 105 :471-478
[37]   On the lattice of conatural classes of linear modular lattices [J].
Sebastián Pardo-Guerra ;
Hugo A. Rincón-Mejía ;
Manuel G. Zorrilla-Noriega ;
Francisco González-Bayona .
Algebra universalis, 2023, 84
[38]   On the lattice of conatural classes of linear modular lattices [J].
Pardo-Guerra, Sebastian ;
Rincon-Mejia, Hugo A. ;
Zorrilla-Noriega, Manuel G. ;
Gonzalez-Bayona, Francisco .
ALGEBRA UNIVERSALIS, 2023, 84 (04)
[39]   Galois theory for a certain class of modular lattices [J].
Panin A.A. ;
Yakovlev A.V. .
Journal of Mathematical Sciences, 1999, 95 (2) :2126-2135
[40]   Frankl's Conjecture is True for Modular Lattices [J].
Tetsuya Abe ;
Bumpei Nakano .
Graphs and Combinatorics, 1998, 14 (4) :305-311