STRONGLY FULLY INVARIANT-EXTENDING MODULAR LATTICES

被引:1
作者
Albu, Toma [1 ]
Kara, Yeliz [2 ]
Tercan, Adnan [3 ]
机构
[1] Romanian Acad, Simion Stoilow Inst Math, POB 1 764, RO-010145 Bucharest 1, Romania
[2] Bursa Uludag Univ, Dept Math, TR-16059 Bursa, Turkey
[3] Hacettepe Univ, Dept Math, Beytepe Campus, TR-06532 Ankara, Turkey
关键词
Modular lattice; upper continuous lattice; linear morphism of lattices; fully invariant element; fully invariant-extending lattice; strongly fully invariant-extending lattice;
D O I
10.2989/16073606.2020.1861488
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is a natural continuation of our previous joint paper [Albu, Kara, Tercan, Fully invariant-extending modular lattices, and applications (I), J. Algebra 517 (2019), 207-222], where we introduced and investigated the notion of a fully invariant-extending lattice, the latticial counterpart of a fully invariant-extending module. In this paper we introduce and investigate the latticial counter-part of the concept of a strongly FI-extending module defined by Birkenmeier, Park, Rizvi (2002) as a module M having the property that every fully invariant submodule of M is essential in a fully invariant direct summand of M. Our main tool in doing so, is again the very useful concept of a linear morphism of lattices introduced in the literature by Albu and Iosif (2013).
引用
收藏
页码:357 / 367
页数:11
相关论文
共 50 条
  • [1] Fully invariant-extending modular lattices, and applications (I)
    Albu, Toma
    Kara, Yeliz
    Tercan, Adnan
    JOURNAL OF ALGEBRA, 2019, 517 : 207 - 222
  • [2] STRONGLY EXTENDING MODULAR LATTICES
    Atani, Shahabaddin ebrahimi
    Khoramdel, Mehdi
    Hesari, Saboura dolati pish
    Alipour, Mahsa nikmard rostam
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2025, 49 (04): : 541 - 553
  • [3] DIRECT SUMMANDS OF GOLDIE EXTENDING ELEMENTS IN MODULAR LATTICES
    Shroff, Rupal
    MATHEMATICA BOHEMICA, 2022, 147 (03): : 359 - 368
  • [4] The lattice structure of all lattice preradicals on modular complete lattices, and applications (I)
    Albu, Toma
    Castro Perez, Jaime
    Rios Montes, Jose
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2019, 62 (01): : 3 - 20
  • [5] The category of linear modular lattices
    Albu, Toma
    Iosif, Mihai
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2013, 56 (01): : 33 - 46
  • [6] The conditions (Ci) in modular lattices, and applications
    Albu, Toma
    Iosif, Mihai
    Tercan, Adnan
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2016, 15 (01)
  • [7] Modularity for upper continuous and strongly atomic lattices
    Lazarz, Marcin
    Siemienczuk, Krzysztof
    ALGEBRA UNIVERSALIS, 2016, 76 (04) : 493 - 495
  • [8] Modularity for upper continuous and strongly atomic lattices
    Marcin Łazarz
    Krzysztof Siemieńczuk
    Algebra universalis, 2016, 76 : 493 - 495
  • [9] A condition for modular lattices
    Wang, Jun
    Wu, Jun
    ALGEBRA UNIVERSALIS, 2007, 57 (04) : 491 - 496
  • [10] A condition for modular lattices
    Jun Wang
    Jun Wu
    Algebra universalis, 2007, 57 : 491 - 496