Expansivity and Cone-fields in Metric Spaces

被引:2
作者
Struski, Lukasz [1 ]
Tabor, Jacek [1 ]
机构
[1] Jagiellonian Univ, Fac Math & Comp Sci, Lojasiewicza 6, PL-30348 Krakow, Poland
关键词
Cone-field; Hyperbolicity; Expansive map; Lyapunov function; LYAPUNOV FUNCTIONS;
D O I
10.1007/s10884-014-9373-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Due to the results of Lewowicz and Tolosa expansivity can be characterized with the aid of Lyapunov function. In this paper we study a similar problem for uniform expansivity and show that it can be described using generalized cone-fields on metric spaces. We say that a function is uniformly expansive on a set if there exist and such that for any two orbits , of we have It occurs that a function is uniformly expansive iff there exists a generalized cone-field on such that is cone-hyperbolic.
引用
收藏
页码:517 / 527
页数:11
相关论文
共 12 条
[1]   CONE CONDITIONS AND COVERING RELATIONS FOR TOPOLOGICALLY NORMALLY HYPERBOLIC INVARIANT MANIFOLDS [J].
Capinski, Maciej J. ;
Zgliczynski, Piotr .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2011, 30 (03) :641-670
[2]  
Gallier J, 2011, UNIVERSITEXT, P1, DOI 10.1007/978-1-4419-8047-2
[3]  
Hruska SL, 2006, FOUND COMPUT MATH, V6, P427, DOI [10.1007/s10208-006-0141-2, 10.1007/sl0208-006-0141-2]
[4]  
KATOK A., 1997, INTRO MODERN THEORY
[5]   Hyperbolic dynamics in graph-directed IFS [J].
Kulaga, Tomasz ;
Tabor, Jacek .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 251 (12) :3363-3380
[6]   LYAPUNOV FUNCTIONS AND TOPOLOGICAL STABILITY [J].
LEWOWICZ, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1980, 38 (02) :192-209
[7]  
Lewowicz J., 1989, Bol. Soc. Brasil. Mat, V20, P113, DOI [10.1007/BF02585472, DOI 10.1007/BF02585472]
[8]   Persistence of semi-trajectories [J].
Lewowicz, Jorge .
JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2006, 18 (04) :1095-1102
[9]  
LIAPOUNOFF A. M., 1907, ANN FAC SCI TOULOUSE, V9, P203, DOI DOI 10.5802/AFST.246
[10]  
Newhouse S., 2004, CONE FIELDS DOMINATI, P419