Active Flutter Suppression of a Wing Section in a Compressible Flow

被引:5
作者
Munoz, Alvaro [1 ]
Garcia-Fogeda, Pablo [1 ]
机构
[1] Univ Politecn Madrid, Dept Aircraft & Space Vehicles, ETSIAE, Madrid 28040, Spain
关键词
aeroservoelasticity; active flutter suppression; unsteady aerodynamics in the Laplace domain; TUNNEL;
D O I
10.3390/aerospace9120804
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
In this paper, a unified method for the computation of the unsteady aerodynamic forces in the Laplace domain for a wing section in subsonic, sonic and supersonic potential flows is presented. The subsonic solution is a new development based on the pressure mode method. The unsteady aerodynamic forces are evaluated in the Laplace domain by an efficient method for computing the kernel. The sonic potential flow solution is an extension of the solution for the frequency domain to the Laplace domain. Analytical expressions for the unsteady pressure coefficient and the unsteady aerodynamic forces in the Laplace domain are obtained for this flow regime. The method is validated in these regimes with existing theories in the frequency domain, and its application to flutter computation is provided for different Mach numbers by the use of the p-method. Active flutter suppression for a wing section with three degrees of freedom has been studied, and an adequate control law has been obtained. Using the proposed approach allows to calculate the unsteady aerodynamic forces directly in the Laplace domain, avoiding the inconvenience of the curve fitting from the frequency to the Laplace domain. In particular, this work can be used as a base for the application of other procedures for flutter suppression in the transonic regime.
引用
收藏
页数:20
相关论文
共 27 条
[11]  
Landahl M.T., 1989, UNSTEADY TRANSONIC F
[12]   VALIDATION OF APPROXIMATE INDICIAL AERODYNAMIC FUNCTIONS FOR TWO-DIMENSIONAL SUBSONIC FLOW [J].
LEISHMAN, JG .
JOURNAL OF AIRCRAFT, 1988, 25 (10) :914-922
[13]   Future of airplane aeroelasticity [J].
Livne, E .
JOURNAL OF AIRCRAFT, 2003, 40 (06) :1066-1092
[14]   Aircraft Active Flutter Suppression: State of the Art and Technology Maturation Needs [J].
Livne, Eli .
JOURNAL OF AIRCRAFT, 2018, 55 (01) :410-450
[15]   Transonic flutter suppression control law design and wind-tunnel test results [J].
Mukhopadhyay, V .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2000, 23 (05) :930-937
[16]  
Nelson H.C., 1951, 1128 NACA
[17]  
Possio C., 1938, LAEROTECHNICA, V4, P441
[18]   Modified Doublet Lattice Method for Its Analytical Continuation in the Complex Plane [J].
Quero, David .
JOURNAL OF AIRCRAFT, 2022, 59 (03) :814-820
[19]  
Rott N, 1949, AEROSP SCI, V4
[20]  
Tewari A., 2015, ADAPTIVE AEROSERVOEL