Scaled Brownian motion with renewal resetting

被引:95
作者
Bodrova, Anna S. [1 ,2 ,3 ]
Chechkin, Aleksei, V [4 ,5 ]
Sokolov, Igor M. [1 ]
机构
[1] Humboldt Univ, Dept Phys, Newtonstr 15, D-12489 Berlin, Germany
[2] Natl Res Univ Higher Sch Econ, Moscow Inst Elect & Math, Moscow 123458, Russia
[3] Moscow MV Lomonosov State Univ, Fac Phys, Moscow 119991, Russia
[4] Univ Potsdam, Inst Phys & Astron, D-14476 Potsdam, Germany
[5] Kharkov Inst Phys & Technol, Akhiezer Inst Theoret Phys, UA-61108 Kharkov, Ukraine
关键词
Stochastic systems;
D O I
10.1103/PhysRevE.100.012120
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate an intermittent stochastic process in which the diffusive motion with time-dependent diffusion coefficient D(t) similar to t(alpha-1) with alpha > 0 (scaled Brownian motion) is stochastically reset to its initial position, and starts anew. In the present work we discuss the situation in which the memory on the value of the diffusion coefficient at a resetting time is erased, so that the whole process is a fully renewal one. The situation when the resetting of the coordinate does not affect the diffusion coefficient's time dependence is considered in the other work of this series [A. S. Bodrova et al., Phys. Rev. E 100, 012119 (2019)]. We show that the properties of the probability densities in such processes (erasing or retaining the memory on the diffusion coefficient) are vastly different. In addition we discuss the first-passage properties of the scaled Brownian motion with renewal resetting and consider the dependence of the efficiency of search on the parameters of the process.
引用
收藏
页数:13
相关论文
共 36 条
[1]  
[Anonymous], 1964, Handbook of mathematical functions
[2]   Intermittent search strategies [J].
Benichou, O. ;
Loverdo, C. ;
Moreau, M. ;
Voituriez, R. .
REVIEWS OF MODERN PHYSICS, 2011, 83 (01) :81-129
[3]   Stochastic search with Poisson and deterministic resetting [J].
Bhat, Uttam ;
De Bacco, Caterina ;
Redner, S. .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2016,
[4]   Nonrenewal resetting of scaled Brownian motion [J].
Bodrova, Anna S. ;
Chechkin, Aleksei, V ;
Sokolov, Igor M. .
PHYSICAL REVIEW E, 2019, 100 (01)
[5]   Random Search with Resetting: A Unified Renewal Approach [J].
Chechkin, A. ;
Sokolov, I. M. .
PHYSICAL REVIEW LETTERS, 2018, 121 (05)
[6]   Non-equilibrium steady states of stochastic processes with intermittent resetting [J].
Eule, Stephan ;
Metzger, Jakob J. .
NEW JOURNAL OF PHYSICS, 2016, 18
[7]   Effects of refractory period on stochastic resetting [J].
Evans, Martin R. ;
Majumdar, Satya N. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (01)
[8]   Diffusion with resetting in arbitrary spatial dimension [J].
Evans, Martin R. ;
Majumdar, Satya N. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (28)
[9]   Optimal diffusive search: nonequilibrium resetting versus equilibrium dynamics [J].
Evans, Martin R. ;
Majumdar, Satya N. ;
Mallick, Kirone .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (18)
[10]   Diffusion with optimal resetting [J].
Evans, Martin R. ;
Majumdar, Satya N. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (43)