Kirchhoff-type problems on a geodesic ball of the hyperbolic space

被引:7
作者
Bisci, Giovanni Molica [1 ]
机构
[1] Univ Mediterranea Reggio Calabria, Dipartimento PAU, I-89124 Reggio Di Calabria, Italy
关键词
Elliptic problems on manifolds; Hyperbolic space; Poincare model; Variational methods; Multiple solutions; SCHRODINGER-HARDY SYSTEMS; ELLIPTIC PROBLEMS; EXISTENCE; EQUATIONS;
D O I
10.1016/j.na.2018.11.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the existence of (weak) solutions for some Kirchhoff-type problems whose simple prototype is given by {-(a + b integral(B)vertical bar del(H)u(sigma)vertical bar(2) d mu) Delta(H)u = lambda f(u) in B-R u = 0 on partial derivative B-R, where Delta(H) denotes the Laplace-Beltrami operator on the ball model of the Hyperbolic space B-N (with N >= 3), a, b and lambda are real parameters, B-R subset of B-N is a geodesic ball centered in zero of radius R and f is a subcritical continuous function. The Kirchhoff term is allowed to vanish at the origin covering the degenerate case. The main technical approach is based on variational and topological methods. (C) 2018 Published by Elsevier Ltd.
引用
收藏
页码:55 / 73
页数:19
相关论文
共 42 条
[1]   A few symmetry results for nonlinear elliptic PDE on noncompact manifolds [J].
Almeida, L ;
Damascelli, L ;
Ge, YX .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2002, 19 (03) :313-342
[2]   A uniqueness result for a nonlocal equation of Kirchhoff type and some related open problem [J].
Anello, Giovanni .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 373 (01) :248-251
[3]  
[Anonymous], 1983, TH ORIE APPL
[4]  
[Anonymous], 1986, CBMS REG C SER MATH
[5]   On the existence of stationary solutions for higher-order p-Kirchhoff problems [J].
Autuori, Giuseppina ;
Colasuonno, Francesca ;
Pucci, Patrizia .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2014, 16 (05)
[6]   Global Nonexistence for Nonlinear Kirchhoff Systems [J].
Autuori, Giuseppina ;
Pucci, Patrizia ;
Salvatori, Maria Cesarina .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 196 (02) :489-516
[7]  
BENEDETTI R., 1992, LECT HYPERBOLIC GEOM, DOI [10.1007/978-3-642-58158-8, DOI 10.1007/978-3-642-58158-8]
[8]  
Bisci GM, 2016, ENCYCLOP MATH APPL, V162
[9]  
Bisci GM, 2018, ELECTRON J DIFFER EQ, P179
[10]   Yamabe-Type Equations on Carnot Groups [J].
Bisci, Giovanni Molica ;
Repovs, Dusan .
POTENTIAL ANALYSIS, 2017, 46 (02) :369-383