Preconditioning methods for high-order strongly stable time integration methods with an application for a DAE problem

被引:11
作者
Axelsson, Owe [1 ]
Blaheta, Radim [1 ]
Kohut, Roman [1 ]
机构
[1] AS CR, Inst Geon, Ostrava 70800, Czech Republic
关键词
stable time integration; Radau method; preconditioning of matrix polynomials; poroelasticity problems; DAE system; RUNGE-KUTTA METHODS; ITERATIVE METHODS;
D O I
10.1002/nla.2015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
High-order strongly stable time integration method enables use of large time steps and is applicable also for differential-algebraic problems, without any order reduction. At each time step, frequently a large-scale linear algebraic system must be solved. To solve the arising block matrix systems, an efficient preconditioning method is presented and analysed. The method is applied for the solution of a consolidation problem arising in poroelasticity. Copyright (C) 2015 John Wiley & Sons, Ltd.
引用
收藏
页码:930 / 949
页数:20
相关论文
共 26 条
[1]  
[Anonymous], NUMERICAL ANAL HIST
[2]  
Ascher Uri M., 1998, COMPUTER METHODS ORD
[3]  
AXELSON O., 1994, Iterative Solution Methods
[4]  
Axelsson O., 1974, BIT (Nordisk Tidskrift for Informationsbehandling), V14, P279, DOI 10.1007/BF01933227
[5]  
Axelsson O, 2000, NUMER LINEAR ALGEBR, V7, P197, DOI 10.1002/1099-1506(200005)7:4<197::AID-NLA194>3.0.CO
[6]  
2-S
[7]  
Axelsson O., 1969, BIT (Nordisk Tidskrift for Informationsbehandling), V9, P185, DOI 10.1007/BF01946812
[8]  
AxELSSON O., 1964, BIT, V4, P69
[9]   A comparison of iterative methods to solve complex valued linear algebraic systems [J].
Axelsson, Owe ;
Neytcheva, Maya ;
Ahmad, Bashir .
NUMERICAL ALGORITHMS, 2014, 66 (04) :811-841
[10]   Stable discretization of poroelasticity problems and efficient preconditioners for arising saddle point type matrices [J].
Axelsson, Owe ;
Blaheta, Radim ;
Byczanski, Petr .
COMPUTING AND VISUALIZATION IN SCIENCE, 2012, 15 (04) :191-207