The spectral norms of g-circulant matrices with classical Fibonacci and Lucas numbers entries

被引:19
作者
Zhou, Jianwei [1 ]
Jiang, Zhaolin [1 ]
机构
[1] Linyi Univ, Dept Math, Linyi 276005, Shandong, Peoples R China
关键词
Spectral norm; g-Circulant matrix; Fibonacci number; Lucas number;
D O I
10.1016/j.amc.2014.02.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate explicit formulae of spectral norms for g-circulant matrices and prove them in details. The entries in the first row of the g-circulant matrices are a(i) = F-i(s) and a(i) = L-i(s) (s = 1, 2). F-i and L-i denotes the Fibonacci number and Lucas number, respectively. Employing these approaches, some numerical tests are presented to verify the results. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:582 / 587
页数:6
相关论文
共 19 条
[1]  
Akbulak M, 2008, HACET J MATH STAT, V37, P89
[2]  
Benoumhani M., 2003, J INTEGER SEQUENCES, V6, P1
[3]   Poisson convergence of eigenvalues of circulant type matrices [J].
Bose, Arup ;
Hazra, Rajat Subhra ;
Saha, Koushik .
EXTREMES, 2011, 14 (04) :365-392
[4]   Circulant type matrices with heavy tailed entries [J].
Bose, Arup ;
Guha, Suman ;
Hazra, Rajat Subhra ;
Saha, Koushik .
STATISTICS & PROBABILITY LETTERS, 2011, 81 (11) :1706-1716
[5]   Spectral Norm of Circulant-Type Matrices [J].
Bose, Arup ;
Hazra, Rajat Subhra ;
Saha, Koushik .
JOURNAL OF THEORETICAL PROBABILITY, 2011, 24 (02) :479-516
[6]   A note on circulant transition matrices in Markov chains [J].
Chou, Wun-Seng ;
Du, Bau-Sen ;
Shiue, J. -S. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 429 (07) :1699-1704
[7]  
Erbas C., 1995, MATH MAG, V68, P343
[8]  
Gray R.M., 2005, INTRO STAT SIGNAL PR
[9]  
Horn R.A., 2012, Matrix Analysis
[10]   On the spectral norms of circulant matrices with classical Fibonacci and Lucas numbers entries [J].
Ipek, Ahmet .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (12) :6011-6012