Defining HIV-1 Vif residues that interact with CBFβ by site-directed mutagenesis

被引:20
|
作者
Matsui, Yusuke [1 ]
Shindo, Keisuke [1 ]
Nagata, Kayoko [1 ]
Lo, Katsuhiro [1 ]
Tada, Kohei [1 ]
Iwai, Fumie [1 ]
Kobayashi, Masayuki [1 ]
Kadowaki, Norimitsu [1 ]
Harris, Reuben S. [2 ,3 ]
Takaori-Kondo, Akifumi [1 ]
机构
[1] Kyoto Univ, Grad Sch Med, Dept Hematol & Oncol, Kyoto 6068507, Japan
[2] Univ Minnesota, Dept Biochem Mol Biol & Biophys, Minneapolis, MN 55455 USA
[3] Univ Minnesota, Inst Mol Virol, Minneapolis, MN 55455 USA
基金
美国国家卫生研究院;
关键词
HIV-1; Vif; CBF beta; Interaction; Host factors; HUMAN-IMMUNODEFICIENCY-VIRUS; E3 UBIQUITIN LIGASE; TYPE-1; VIF; ANTIVIRAL ACTIVITY; VIRAL INFECTIVITY; ENZYME APOBEC3G; T-LYMPHOCYTES; SOCS-BOX; DEGRADATION; COMPLEX;
D O I
10.1016/j.virol.2013.11.004
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Vif is essential for HIV-1 replication in T cells and macrophages. Vif recruits a host ubiquitin ligase complex to promote proteasomal degradation of the APOBEC3 restriction factors by poly-ubiquitination. The cellular transcription cofactor CBF beta is required for Vif function by stabilizing the Vif protein and promoting recruitment of a cellular Cullin5-RING ubiquitin ligase complex. Interaction between Vif and CBF beta is a promising therapeutic target, but little is known about the interfacial residues. We now demonstrate that Vif conserved residues E88/W89 are crucial for CBF beta binding. Substitution of E88/W89 to alanines impaired binding to CBF beta, degradation of APOBEC3, and virus infectivity in the presence of APOBEC3 in single-cycle infection. In spreading infection, NL4-3 with Vif E88A/W89A mutation replicated comparably to wild-type virus in permissive CEM-SS cells, but not in multiple APOBEC3 expressing non-permissive CEM cells. These results support a model in which HIV-1 Vif residues E88/W89 may participate in binding CBF beta. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:82 / 87
页数:6
相关论文
共 50 条
  • [1] Probing the RNA Binding Surface of the HIV-1 Nucleocapsid Protein by Site-Directed Mutagenesis
    Ouyang, Wei
    Okaine, Stephen
    McPike, Mark P.
    Lin, Yong
    Borer, Philip N.
    BIOCHEMISTRY, 2013, 52 (19) : 3358 - 3368
  • [2] Probing the RNA Binding Surface of the HIV-1 Nucleocapsid Protein by Site-Directed Mutagenesis
    Ouyang, Wei
    Borer, Philip N.
    BIOPHYSICAL JOURNAL, 2011, 100 (03) : 231 - 231
  • [3] Site-directed mutagenesis of active site residues of phosphite dehydrogenase
    Woodyer, R
    Wheatley, JL
    Relyea, HA
    Rimkus, S
    van der Donk, WA
    BIOCHEMISTRY, 2005, 44 (12) : 4765 - 4774
  • [4] Molecular dynamics simulation of site-directed mutagenesis of HIV-1 Tat trans-activator
    Cui, Y
    Ling, LJ
    Chen, RS
    Bai, LC
    Yuan, JG
    Qiang, BQ
    CHINESE SCIENCE BULLETIN, 1999, 44 (08): : 708 - 711
  • [5] Molecular dynamics simulation of site-directed mutagenesis of HIV-1 Tat trans-activator
    GUI Yan
    Institute of Basic Medical Sciences
    Chinese Science Bulletin, 1999, (08) : 708 - 711
  • [6] Heterogeneity in recombinant HIV-1 integrase corrected by site-directed mutagenesis: The identification and elimination of a protease cleavage site
    Hickman, AB
    Dyda, F
    Craigie, R
    PROTEIN ENGINEERING, 1997, 10 (05): : 601 - 606
  • [7] Site-Directed Mutagenesis
    Bachman, Julia
    LABORATORY METHODS IN ENZYMOLOGY: DNA, 2013, 529 : 241 - 248
  • [8] SITE-DIRECTED MUTAGENESIS
    SMITH, M
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1986, 317 (1540): : 295 - 304
  • [9] SITE-DIRECTED MUTAGENESIS
    ECKSTEIN, F
    CHEMIE IN UNSERER ZEIT, 1993, 27 (06) : 289 - 290
  • [10] SITE-DIRECTED MUTAGENESIS
    CARTER, P
    BIOCHEMICAL JOURNAL, 1986, 237 (01) : 1 - 7