Tetravalent 2-arc-transitive Cayley graphs on non-abelian simple groups

被引:9
|
作者
Du, Jia-Li [1 ]
Feng, Yan-Quan [1 ]
机构
[1] Beijing Jiaotong Univ, Dept Math, Beijing 100044, Peoples R China
基金
中国国家自然科学基金;
关键词
Cayley graph; permutation group; simple group; PERMUTATION-GROUPS; TRANSITIVE GRAPHS; SYMMETRIC GRAPHS; FINITE; INDEX;
D O I
10.1080/00927872.2018.1549661
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite non-abelian simple group and let be a connected tetravalent 2-arc-transitive G-regular graph. In 2004, Fang, Li, and Xu proved that either G is normal in the full automorphism group of , or G is one of up to 22 exceptional candidates. In this paper, the number of exceptions is reduced to 7, and for each one, it is shown that has a normal arc-transitive non-abelian simple subgroup T such that and the pair (G, T) is explicitly given. Furthermore, there exists a G-regular -arc-transitive graph for each of the 7 pairs (G, T).
引用
收藏
页码:4565 / 4574
页数:10
相关论文
共 50 条
  • [21] On Connected Tetravalent Cayley Graphs of a Non-abelian Group of Order 3p2
    Darafsheh, M. R.
    Abdollahi, M.
    ALGEBRA COLLOQUIUM, 2017, 24 (03) : 467 - 480
  • [22] On basic 2-arc-transitive graphs
    Lu, Zai Ping
    Song, Ruo Yu
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2023, 58 (04) : 1081 - 1093
  • [23] On edge-primitive 2-arc-transitive graphs
    Lu, Zai Ping
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2020, 171
  • [24] Using mixed dihedral groups to construct normal Cayley graphs and a new bipartite 2-arc-transitive graph which is not a Cayley graph
    Daniel R. Hawtin
    Cheryl E. Praeger
    Jin-Xin Zhou
    Journal of Algebraic Combinatorics, 2024, 59 : 561 - 574
  • [25] Using mixed dihedral groups to construct normal Cayley graphs and a new bipartite 2-arc-transitive graph which is not a Cayley graph
    Hawtin, Daniel R.
    Praeger, Cheryl E.
    Zhou, Jin-Xin
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2024, 59 (03) : 575 - 579
  • [26] Tetravalent edge-transitive Cayley graphs of Frobenius groups
    Lei Wang
    Yin Liu
    Yanxiong Yan
    Journal of Algebraic Combinatorics, 2021, 53 : 527 - 551
  • [27] Tetravalent edge-transitive Cayley graphs of Frobenius groups
    Wang, Lei
    Liu, Yin
    Yan, Yanxiong
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2021, 53 (02) : 527 - 551
  • [28] Inclusions of innately transitive groups into wreath products in product action with applications to 2-arc-transitive graphs
    Li, Cai-Heng
    Praeger, Cheryl E.
    Schneider, Csaba
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2016, 220 (07) : 2683 - 2700
  • [29] On Arc-Transitive Pentavalent Cayley Graphs on Finite Nonabelian Simple Groups
    Ling, Bo
    Lou, Ben Gong
    GRAPHS AND COMBINATORICS, 2017, 33 (05) : 1297 - 1306
  • [30] Total Coloring of Some Classes of Cayley Graphs on Non-Abelian Groups
    Prajnanaswaroopa, Shantharam
    Geetha, Jayabalan
    Somasundaram, Kanagasabapathi
    Suksumran, Teerapong
    SYMMETRY-BASEL, 2022, 14 (10):