Tetravalent 2-arc-transitive Cayley graphs on non-abelian simple groups

被引:9
|
作者
Du, Jia-Li [1 ]
Feng, Yan-Quan [1 ]
机构
[1] Beijing Jiaotong Univ, Dept Math, Beijing 100044, Peoples R China
基金
中国国家自然科学基金;
关键词
Cayley graph; permutation group; simple group; PERMUTATION-GROUPS; TRANSITIVE GRAPHS; SYMMETRIC GRAPHS; FINITE; INDEX;
D O I
10.1080/00927872.2018.1549661
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite non-abelian simple group and let be a connected tetravalent 2-arc-transitive G-regular graph. In 2004, Fang, Li, and Xu proved that either G is normal in the full automorphism group of , or G is one of up to 22 exceptional candidates. In this paper, the number of exceptions is reduced to 7, and for each one, it is shown that has a normal arc-transitive non-abelian simple subgroup T such that and the pair (G, T) is explicitly given. Furthermore, there exists a G-regular -arc-transitive graph for each of the 7 pairs (G, T).
引用
收藏
页码:4565 / 4574
页数:10
相关论文
共 50 条
  • [1] On 2-arc-transitive Cayley graphs of Abelian groups
    Potocnik, P
    DISCRETE MATHEMATICS, 2002, 244 (1-3) : 417 - 421
  • [2] 2-Arc-transitive hexavalent Cayley graphs on nonabelian simple groups
    Pan, Jiangmin
    Wu, Cixuan
    Zhang, Yingnan
    COMMUNICATIONS IN ALGEBRA, 2022, 50 (11) : 4891 - 4905
  • [3] 2-Arc-transitive Cayley graphs on alternating groups
    Pan, Jiangmin
    Xia, Binzhou
    Yin, Fugang
    JOURNAL OF ALGEBRA, 2022, 610 : 655 - 683
  • [4] Normal edge-transitive Cayley graphs on non-abelian simple groups
    Zhang, Xing
    Feng, Yan-Quan
    Yin, Fu-Gang
    Zhou, Jin-Xin
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2025, 215
  • [5] On 2-arc-transitive bi-Cayley graphs of finite simple groups
    Li, Jing Jian
    Wang, Yu
    Zhou, Jin-Xin
    DISCRETE MATHEMATICS, 2024, 347 (06)
  • [6] Automorphism groups of tetravalent Cayley graphs on minimal non-abelian groups
    Ghasemi, Mohsen
    ALGEBRA & DISCRETE MATHEMATICS, 2012, 13 (01): : 52 - 58
  • [7] Arc-transitive Cayley graphs on non-abelian simple groups with soluble vertex stabilizers and valency seven
    Pan, Jiangmin
    Yin, Fugang
    Ling, Bo
    DISCRETE MATHEMATICS, 2019, 342 (03) : 689 - 696
  • [8] NORMAL EDGE-TRANSITIVE AND 1/2-ARC-TRANSITIVE CAYLEY GRAPHS ON NON-ABELIAN GROUPS OF ORDER 2pq, p > q ARE ODD PRIMES
    Ashrafi, Ali Reza
    Soleimani, Bijan
    INTERNATIONAL JOURNAL OF GROUP THEORY, 2016, 5 (03) : 1 - 8
  • [9] NORMAL EDGE-TRANSITIVE AND 1/2-ARC-TRANSITIVE CAYLEY GRAPHS ON NON-ABELIAN GROUPS OF ODD ORDER 3pq, p AND q ARE PRIMES
    Soleimani, Bijan
    Ashrafi, Ali Reza
    TAMKANG JOURNAL OF MATHEMATICS, 2018, 49 (03): : 183 - 194
  • [10] CLASSIFICATION OF TETRAVALENT 2-TRANSITIVE NONNORMAL CAYLEY GRAPHS OF FINITE SIMPLE GROUPS
    Fang, Xin Gui
    Wang, Jie
    Zhou, Sanming
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2021, 104 (02) : 263 - 271