Reconstructing rational stable motivic homotopy theory

被引:10
|
作者
Garkusha, Grigory [1 ]
机构
[1] Swansea Univ, Dept Math, Fabian Way, Swansea SA1 8EN, W Glam, Wales
关键词
motivic homotopy theory; generalized correspondences; triangulated categories of motives;
D O I
10.1112/S0010437X19007425
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using a recent computation of the rational minus part of S H(k) by Ananyevskiy, Levine and Panin, a theorem of Cisinski and Deglise and a version of the Rondigs and Ostvar theorem, rational stable motivic homotopy theory over an infinite perfect field of characteristic different from 2 is recovered in this paper from finite Milnor Witt correspondences in the sense of Calmes and Fasel.
引用
收藏
页码:1424 / 1443
页数:20
相关论文
共 50 条
  • [21] Motivic homotopy theory of algebraic stacks
    Chowdhury, Chirantan
    ANNALS OF K-THEORY, 2024, 9 (01) : 1 - 22
  • [22] THE SECOND STABLE HOMOTOPY GROUPS OF MOTIVIC SPHERES
    Roendigs, Oliver
    Spitzweck, Markus
    Ostvaer, Paul arne
    DUKE MATHEMATICAL JOURNAL, 2024, 173 (06) : 1017 - 1084
  • [23] Semitopologization in motivic homotopy theory and applications
    Krishna, Amalendu
    Park, Jinhyun
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2015, 15 (02): : 823 - 861
  • [24] The Hurewicz map in motivic homotopy theory
    Choudhury, Utsav
    Hogadi, Amit
    ANNALS OF K-THEORY, 2022, 7 (01) : 179 - 190
  • [25] The homotopy limit problem for Hermitian K-theory, equivariant motivic homotopy theory and motivic Real cobordism
    Hu, P.
    Kriz, I.
    Ormsby, K.
    ADVANCES IN MATHEMATICS, 2011, 228 (01) : 434 - 480
  • [26] Fundamental classes in motivic homotopy theory
    Deglise, Frederic
    Jin, Fangzhou
    Khan, Adeel A.
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2021, 23 (12) : 3935 - 3993
  • [27] Erratum to: Rigidity in motivic homotopy theory
    Oliver Röndigs
    Paul Arne Østvær
    Mathematische Annalen, 2011, 350 (3)
  • [28] A comparison of motivic and classical stable homotopy theories
    Levine, Marc
    JOURNAL OF TOPOLOGY, 2014, 7 (02) : 327 - 362
  • [29] Isotropic stable motivic homotopy groups of spheres
    Tanania, Fabio
    ADVANCES IN MATHEMATICS, 2021, 383
  • [30] The first stable homotopy groups of motivic spheres
    Rondigs, Oliver
    Spitzweck, Markus
    Ostvaer, Paul Arne
    ANNALS OF MATHEMATICS, 2019, 189 (01) : 1 - 74