Reconstructing rational stable motivic homotopy theory

被引:10
|
作者
Garkusha, Grigory [1 ]
机构
[1] Swansea Univ, Dept Math, Fabian Way, Swansea SA1 8EN, W Glam, Wales
关键词
motivic homotopy theory; generalized correspondences; triangulated categories of motives;
D O I
10.1112/S0010437X19007425
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using a recent computation of the rational minus part of S H(k) by Ananyevskiy, Levine and Panin, a theorem of Cisinski and Deglise and a version of the Rondigs and Ostvar theorem, rational stable motivic homotopy theory over an infinite perfect field of characteristic different from 2 is recovered in this paper from finite Milnor Witt correspondences in the sense of Calmes and Fasel.
引用
收藏
页码:1424 / 1443
页数:20
相关论文
共 50 条
  • [1] Motivic and real etale stable homotopy theory
    Bachmann, Tom
    COMPOSITIO MATHEMATICA, 2018, 154 (05) : 883 - 917
  • [2] GALOIS EQUIVARIANCE AND STABLE MOTIVIC HOMOTOPY THEORY
    Heller, J.
    Ormsby, K.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 368 (11) : 8047 - 8077
  • [3] Rigidity in etale motivic stable homotopy theory
    Bachmann, Tom
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2021, 21 (01): : 173 - 209
  • [4] Primes and fields in stable motivic homotopy theory
    Heller, Jeremiah
    Ormsby, Kyle M.
    GEOMETRY & TOPOLOGY, 2018, 22 (04) : 2187 - 2218
  • [5] ON THE RATIONAL MOTIVIC HOMOTOPY CATEGORY
    Deglise, Frederic
    Fasel, Jean
    Jin, Fangzhou
    Khan, Adeel A.
    JOURNAL DE L ECOLE POLYTECHNIQUE-MATHEMATIQUES, 2021, 8 : 533 - 583
  • [6] Motivic stable homotopy theory is strictly commutative at the characteristic
    Bachmann, Tom
    ADVANCES IN MATHEMATICS, 2022, 410
  • [7] Motivic Homotopy Theory
    Levine, Marc
    MILAN JOURNAL OF MATHEMATICS, 2008, 76 (01) : 165 - 199
  • [8] Motivic Homotopy Theory
    Marc Levine
    Milan Journal of Mathematics, 2008, 76 : 165 - 199
  • [9] Morphisms of Rational Motivic Homotopy Types
    Ishai Dan-Cohen
    Tomer Schlank
    Applied Categorical Structures, 2021, 29 : 311 - 347
  • [10] Morphisms of Rational Motivic Homotopy Types
    Dan-Cohen, Ishai
    Schlank, Tomer
    APPLIED CATEGORICAL STRUCTURES, 2021, 29 (02) : 311 - 347