Puerarin attenuates pressure overload-induced cardiac hypertrophy

被引:82
|
作者
Yuan, Yuan [1 ,2 ]
Zong, Jing [1 ,2 ]
Zhou, Heng [1 ,2 ]
Bian, Zhou-Yan [1 ,2 ]
Deng, Wei [1 ,2 ]
Dai, Jia [1 ,2 ]
Gan, Hua-Wen [1 ,2 ]
Yang, Zheng [1 ,2 ]
Li, Hongliang [1 ,2 ]
Tang, Qi-Zhu [1 ,2 ]
机构
[1] Wuhan Univ, Renmin Hosp, Dept Cardiol, Wuhan 430060, Peoples R China
[2] Wuhan Univ, Cardiovasc Res Inst, Wuhan 430060, Peoples R China
基金
中国国家自然科学基金;
关键词
Aortic coarctation; Hypertrophy; Pharmacology; HEART-FAILURE; MYOCARDIAL FIBROSIS; EXPRESSION; RATS; DYSFUNCTION; APOPTOSIS; PATHWAY; MICE; OVEREXPRESSION; INHIBITION;
D O I
10.1016/j.jjcc.2013.06.008
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: Puerarin is the most abundant isoflavonoid in kudzu root. It has been used to treat angina pectoris and myocardial infarction clinically. However, little is known about the effect of puerarin on cardiac hypertrophy. Methods: Aortic banding (AB) was performed to induce cardiac hypertrophy in mice. Puerarin premixed in diets was administered to mice after one week of AB. Echocardiography and catheter-based measurements of hemodynamic parameters were performed at 7 weeks after starting puerarin treatment (8 weeks post-surgery). The extent of cardiac hypertrophy was also evaluated by pathological and molecular analyses of heart samples. Cardiomyocyte apoptosis was assessed by measuring Bax and Bcl-2 protein expression and terminal deoxynucleotidyl transferase dUTP nick end labeling staining. In addition, the inhibitory effect of puerarin (1 mu M, 5 mu M, 10 mu M, 20 mu M, 40 mu M) on mRNA expression of atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP) in Ang II (1 mu M)-stimulated H9c2 cells was investigated using quantitative real-time reverse transcription-polymerase chain reaction. Results: Echocardiography and catheter-based measurements of hemodynamic parameters at 7 weeks revealed the amelioration of systolic and diastolic abnormalities. Puerarin also decreased cardiac fibrosis in AB mice. Moreover, the beneficial effect of puerarin was associated with the normalization in gene expression of hypertrophic and fibrotic markers. Further studies showed that pressure overload significantly induced the activation of phosphoinositide 3-kinase (PI3K)/Akt signaling and c-Jun N-terminal kinase (JNK) signaling, which was blocked by puerarin treatment. Cardiomyocyte apoptosis and induction of Bax in response to AB were suppressed by puerarin. Furthermore, the increased mRNA expression of ANP and BNP induced by Ang II (1 mu M) was restrained to a different extent by different concentrations of puerarin. Conclusion: Puerarin may have an ability to retard the progression of cardiac hypertrophy and apoptosis which is probably mediated by the blockade of PI3K/Akt and JNK signaling pathways, (C) 2013 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:73 / 81
页数:9
相关论文
共 50 条
  • [1] Cinnamaldehyde attenuates pressure overload-induced cardiac hypertrophy
    Yang, Liu
    Wu, Qing-Qing
    Liu, Yuan
    Hu, Zhe-Fu
    Bian, Zhou-Yan
    Tang, Qi-Zhu
    INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY, 2015, 8 (11): : 14345 - 14354
  • [2] Evodiamine attenuates pressure overload-induced cardiac hypertrophy
    Li, Fangfang
    Yuan, Yuan
    Zhang, Ning
    Wu, Qingqing
    Li, Jin
    Zhou, Mengqiao
    Yang, Zheng
    Tang, Qizhu
    INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL MEDICINE, 2017, 10 (07): : 10202 - 10213
  • [3] Naringenin attenuates pressure overload-induced cardiac hypertrophy
    Zhang, Ning
    Yang, Zheng
    Yuan, Yuan
    Li, Fangfang
    Liu, Yuan
    Ma, Zhenguo
    Liao, Haihan
    Bian, Zhouyan
    Zhang, Yao
    Zhou, Heng
    Deng, Wei
    Zhou, Mengqiao
    Tang, Qizhu
    EXPERIMENTAL AND THERAPEUTIC MEDICINE, 2015, 10 (06) : 2206 - 2212
  • [4] Bezafibrate Attenuates Pressure Overload-Induced Cardiac Hypertrophy and Fibrosis
    Xu, Si-Chi
    Ma, Zhen-Guo
    Wei, Wen-Ying
    Yuan, Yu-Pei
    Tang, Qi-Zhu
    PPAR RESEARCH, 2017, 2017
  • [5] Diacylglycerol kinase ζ attenuates pressure overload-induced cardiac hypertrophy
    Harada, Mutsuo
    Takeishi, Yasuchika
    Arimoto, Takanori
    Niizeki, Takeshi
    Kitahara, Tatsuro
    Goto, Kaoru
    Walsh, Richard A.
    Kubota, Isao
    CIRCULATION JOURNAL, 2007, 71 (02) : 276 - 282
  • [6] Exercise preconditioning attenuates pressure overload-induced pathological cardiac hypertrophy
    Xu, Tongyi
    Tang, Hao
    Zhang, Ben
    Cai, Chengliang
    Liu, Xiaohong
    Han, Qingqi
    Zou, Liangjian
    INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY, 2015, 8 (01): : 530 - 540
  • [7] Autophagy and pressure overload-induced cardiac hypertrophy
    Zeng, Yong
    Ren, Wei-Qiong
    Wen, Ai-Zhen
    Zhang, Wen
    Fan, Fu-Yuan
    Chen, Ou-Ying
    JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH, 2022, 24 (12) : 1101 - 1108
  • [8] Metformin attenuates pressure overload-induced cardiac hypertrophy via AMPK activation
    Yong-nan Fu
    Han Xiao
    Xiao-wei Ma
    Sheng-yang Jiang
    Ming Xu
    You-yi Zhang
    Acta Pharmacologica Sinica, 2011, 32 : 879 - 887
  • [9] Interruption of Wnt signaling attenuates the onset of pressure overload-induced cardiac hypertrophy
    van de Schans, Veerle A. M.
    van den Borne, Susanne W. M.
    Strzelecka, Agnieszka E.
    Janssen, Ben J. A.
    van der Velden, Jos L. J.
    Langen, Ramon C. J.
    Wynshaw-Boris, Antony
    Smits, Jos F. M.
    Blankesteijn, W. Matthijs
    HYPERTENSION, 2007, 49 (03) : 473 - 480
  • [10] Metformin attenuates pressure overload-induced cardiac hypertrophy via AMPK activation
    Fu, Yong-nan
    Xiao, Han
    Ma, Xiao-wei
    Jiang, Sheng-yang
    Xu, Ming
    Zhang, You-yi
    ACTA PHARMACOLOGICA SINICA, 2011, 32 (07) : 879 - 887