An attention-based deep learning model for traffic flow prediction using spatiotemporal features towards sustainable smart city

被引:64
作者
Vijayalakshmi, Balachandran [1 ]
Ramar, Kadarkarayandi [2 ]
Jhanjhi, N. Z. [3 ]
Verma, Sahil [4 ]
Kaliappan, Madasamy [1 ]
Vijayalakshmi, Kandasamy [1 ]
Vimal, Shanmuganathan [5 ]
Kavita [4 ]
Ghosh, Uttam [6 ]
机构
[1] Ramco Inst Technol, Dept Comp Sci & Engn, Rajapalayam, India
[2] Muthayammal Engn Coll, Dept Elect & Commun Engn, Rasipuram, India
[3] Taylors Univ, Sch Comp Sci & Engn, SCE, Subang Jaya 47500, Malaysia
[4] Lovely Profess Univ, Sch Comp Sci & Engn, Phagwara, India
[5] Natl Engn Coll, Dept IT, Kovilpatti, India
[6] Vanderbilt Univ, Dept Comp Sci, Nashville, TN 37235 USA
关键词
attention model; convolution neural network; long short‐ term memory; traffic flow prediction; ANOMALY DETECTION SCHEME; ALGORITHM; LSTM; NETWORKS;
D O I
10.1002/dac.4609
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In the development of smart cities, the intelligent transportation system (ITS) plays a major role. The dynamic and chaotic nature of the traffic information makes the accurate forecasting of traffic flow as a challengeable one in ITS. The volume of traffic data increases dramatically. We enter the epoch of big data. Hence, a 1deep architecture is necessary to process, analyze, and inference such a large volume of data. To develop a better traffic flow forecasting model, we proposed an attention-based convolution neural network long short-term memory (CNN-LSTM), a multistep prediction model. The proposed scheme uses the spatial and time-based details of the traffic data, which are extracted using CNN and LSTM networks to improve the model accuracy. The attention-based model helps to identify the near term traffic details such as speed that is very important for predicting the future value of flow. The results show that our attention-based CNN-LSTM prediction model provides better accuracy in terms of prediction during weekdays and weekend days in the case of peak and nonpeak hours also. We used data from the largest traffic data set the California Department of Transportation (Caltrans) for our prediction work.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Uncertainty-Aware Traffic Prediction using Attention-based Deep Hybrid Network with Bayesian Inference
    Rahman, Moshiur
    Jamil, Abu Rafe Md
    Nower, Naushin
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (06) : 1243 - 1251
  • [22] Attention-Based Spatial-Temporal Fusion Networks for Traffic Flow Prediction
    Wang, Jiaying
    Yang, Heng
    Shan, Jing
    Jiang, Junyi
    Song, Xiaoxu
    WEB INFORMATION SYSTEMS AND APPLICATIONS, WISA 2024, 2024, 14883 : 500 - 511
  • [23] Network traffic classification model based on attention mechanism and spatiotemporal features
    Hu, Feifei
    Zhang, Situo
    Lin, Xubin
    Wu, Liu
    Liao, Niandong
    Song, Yanqi
    EURASIP JOURNAL ON INFORMATION SECURITY, 2023, 2023 (01)
  • [24] A fundamental diagram based hybrid framework for traffic flow estimation and prediction by combining a Markovian model with deep learning
    Pan, Yuyan Annie
    Guo, Jifu
    Chen, Yanyan
    Cheng, Qixiu
    Li, Wenhao
    Liu, Yanyue
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 238
  • [25] Attention-based Bicomponent Synchronous Graph Convolutional Network for traffic flow prediction
    Shen, Cheng
    Han, Kai
    Bi, Tianyuan
    2021 17TH INTERNATIONAL CONFERENCE ON MOBILITY, SENSING AND NETWORKING (MSN 2021), 2021, : 778 - 785
  • [26] Traffic Flow Prediction Using Deep Learning Techniques
    Goswami, Shubhashish
    Kumar, Abhimanyu
    COMPUTING SCIENCE, COMMUNICATION AND SECURITY, 2022, 1604 : 198 - 213
  • [27] Deep fake detection using an optimal deep learning model with multi head attention-based feature extraction scheme
    Sekar, R. Raja
    Rajkumar, T. Dhiliphan
    Anne, Koteswara Rao
    VISUAL COMPUTER, 2025, 41 (04) : 2783 - 2800
  • [28] Road traffic flow prediction based on dynamic spatiotemporal graph attention network
    Chen, Yuguang
    Huang, Jintao
    Xu, Hongbin
    Guo, Jincheng
    Su, Linyong
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [29] Traffic Flow Prediction for Smart Traffic Lights Using Machine Learning Algorithms
    Navarro-Espinoza, Alfonso
    Lopez-Bonilla, Oscar Roberto
    Garcia-Guerrero, Enrique Efren
    Tlelo-Cuautle, Esteban
    Lopez-Mancilla, Didier
    Hernandez-Mejia, Carlos
    Inzunza-Gonzalez, Everardo
    TECHNOLOGIES, 2022, 10 (01)
  • [30] An Attention-Based Deep Learning Framework for Trip Destination Prediction of Sharing Bike
    Wang, Wei
    Zhao, Xiaofeng
    Gong, Zhiguo
    Chen, Zhikui
    Zhang, Ning
    Wei, Wei
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (07) : 4601 - 4610