An attention-based deep learning model for traffic flow prediction using spatiotemporal features towards sustainable smart city

被引:64
|
作者
Vijayalakshmi, Balachandran [1 ]
Ramar, Kadarkarayandi [2 ]
Jhanjhi, N. Z. [3 ]
Verma, Sahil [4 ]
Kaliappan, Madasamy [1 ]
Vijayalakshmi, Kandasamy [1 ]
Vimal, Shanmuganathan [5 ]
Kavita [4 ]
Ghosh, Uttam [6 ]
机构
[1] Ramco Inst Technol, Dept Comp Sci & Engn, Rajapalayam, India
[2] Muthayammal Engn Coll, Dept Elect & Commun Engn, Rasipuram, India
[3] Taylors Univ, Sch Comp Sci & Engn, SCE, Subang Jaya 47500, Malaysia
[4] Lovely Profess Univ, Sch Comp Sci & Engn, Phagwara, India
[5] Natl Engn Coll, Dept IT, Kovilpatti, India
[6] Vanderbilt Univ, Dept Comp Sci, Nashville, TN 37235 USA
关键词
attention model; convolution neural network; long short‐ term memory; traffic flow prediction; ANOMALY DETECTION SCHEME; ALGORITHM; LSTM; NETWORKS;
D O I
10.1002/dac.4609
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In the development of smart cities, the intelligent transportation system (ITS) plays a major role. The dynamic and chaotic nature of the traffic information makes the accurate forecasting of traffic flow as a challengeable one in ITS. The volume of traffic data increases dramatically. We enter the epoch of big data. Hence, a 1deep architecture is necessary to process, analyze, and inference such a large volume of data. To develop a better traffic flow forecasting model, we proposed an attention-based convolution neural network long short-term memory (CNN-LSTM), a multistep prediction model. The proposed scheme uses the spatial and time-based details of the traffic data, which are extracted using CNN and LSTM networks to improve the model accuracy. The attention-based model helps to identify the near term traffic details such as speed that is very important for predicting the future value of flow. The results show that our attention-based CNN-LSTM prediction model provides better accuracy in terms of prediction during weekdays and weekend days in the case of peak and nonpeak hours also. We used data from the largest traffic data set the California Department of Transportation (Caltrans) for our prediction work.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Mobile traffic prediction with attention-based hybrid deep learning
    Wang, Li
    Che, Linxiao
    Lam, Kwok-Yan
    Liu, Wenqiang
    Li, Feng
    PHYSICAL COMMUNICATION, 2024, 66
  • [2] Traffic Flow Prediction with Heterogeneous Spatiotemporal Data Based on a Hybrid Deep Learning Model Using Attention-Mechanism
    Wang, Jing-Doo
    Susanto, Chayadi Oktomy Noto
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2024, 140 (02): : 1711 - 1728
  • [3] An Attention-Mechanism-Based Traffic Flow Prediction Scheme for Smart City
    Hu, Xiao
    Wei, Xin
    Gao, Yun
    Zhuang, Wenqin
    Chen, Mingzi
    Lv, Haibing
    2019 15TH INTERNATIONAL WIRELESS COMMUNICATIONS & MOBILE COMPUTING CONFERENCE (IWCMC), 2019, : 1822 - 1827
  • [4] Attention based spatiotemporal model for short-term traffic flow prediction
    Nisha Singh
    Kranti Kumar
    Bhawna Pokhriyal
    International Journal of System Assurance Engineering and Management, 2025, 16 (4) : 1517 - 1531
  • [5] FASTNN: A Deep Learning Approach for Traffic Flow Prediction Considering Spatiotemporal Features
    Zhou, Qianqian
    Chen, Nan
    Lin, Siwei
    SENSORS, 2022, 22 (18)
  • [6] Lane-Level Heterogeneous Traffic Flow Prediction: A Spatiotemporal Attention-Based Encoder-Decoder Model
    Zheng, Yan
    Li, Wenquan
    Zheng, Wen
    Dong, Chunjiao
    Wang, Shengyou
    Chen, Qian
    IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE, 2023, 15 (03) : 51 - 67
  • [7] IGAGCN: Information geometry and attention-based spatiotemporal graph convolutional networks for traffic flow prediction
    An, Jiyao
    Guo, Liang
    Liu, Wei
    Fu, Zhiqiang
    Ren, Ping
    Liu, Xinzhi
    Li, Tao
    NEURAL NETWORKS, 2021, 143 : 355 - 367
  • [8] A Hybrid Deep Learning Model With Attention-Based Conv-LSTM Networks for Short-Term Traffic Flow Prediction
    Zheng, Haifeng
    Lin, Feng
    Feng, Xinxin
    Chen, Youjia
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2021, 22 (11) : 6910 - 6920
  • [9] AIST: An Interpretable Attention-Based Deep Learning Model for Crime Prediction
    Rayhan, Yeasir
    Hashem, Tanzima
    ACM TRANSACTIONS ON SPATIAL ALGORITHMS AND SYSTEMS, 2023, 9 (02)
  • [10] Traffic Flow Prediction Model Based on Deep Learning
    Wang, Bowen
    Wang, Jingsheng
    Zhang, Zeyou
    Zhao, Danting
    MAN-MACHINE-ENVIRONMENT SYSTEM ENGINEERING, MMESE, 2022, 800 : 739 - 745