Self-consistent determination of the many-body state of ultracold bosonic atoms in a one-dimensional harmonic trap

被引:10
作者
Marchukov, Oleksandr, V [1 ]
Fischer, Uwe R. [2 ]
机构
[1] Tel Aviv Univ, Fac Engn, Sch Elect Engn, IL-6997801 Tel Aviv, Israel
[2] Seoul Natl Univ, Ctr Theoret Phys, Dept Phys & Astron, Seoul 08826, South Korea
基金
以色列科学基金会;
关键词
Ultracold quantum gases; Quantum many body physics; Fragmentation; Self-consistent calculations; BOSE-EINSTEIN CONDENSATION; LONG-RANGE ORDER; QUANTUM; GAS; EXISTENCE; SYSTEMS;
D O I
10.1016/j.aop.2019.03.023
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study zero-temperature quantum fluctuations in harmonically trapped one-dimensional interacting Bose gases, using the self-consistent multiconfigurational time-dependent Hartree method. We define phase fluctuations from the full single-particle density matrix by the spatial decay exponent of off-diagonal long-range order. In a regime of mesoscopic particle numbers and moderate contact couplings, we derive the spatial dependence of the amplitude of phase fluctuations, determined from the self-consistently derived shape of the field operator orbitals and Fock space orbital occupation amplitudes. It is shown that the phase fluctuations display a peak, which in turn corresponds to a dip of the first-order correlations in position space, akin to what has previously been obtained in the Tonks-Girardeau limit of very large interactions and low densities. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:274 / 288
页数:15
相关论文
共 60 条
  • [11] Maximal length of trapped one-dimensional Bose-Einstein condensates
    Fischer, UR
    [J]. JOURNAL OF LOW TEMPERATURE PHYSICS, 2005, 138 (3-4) : 723 - 728
  • [12] Condensate fragmentation as a sensitive measure of the quantum many-body behavior of bosons with long-range interactions
    Fischer, Uwe R.
    Lode, Axel U. J.
    Chatterjee, Budhaditya
    [J]. PHYSICAL REVIEW A, 2015, 91 (06):
  • [13] Interacting trapped bosons yield fragmented condensate states in low dimensions
    Fischer, Uwe R.
    Bader, Philipp
    [J]. PHYSICAL REVIEW A, 2010, 82 (01):
  • [14] Stability and phase coherence of trapped 1D Bose gases
    Gangardt, DM
    Shlyapnikov, GV
    [J]. PHYSICAL REVIEW LETTERS, 2003, 90 (01) : 4
  • [15] Relaxation and Prethermalization in an Isolated Quantum System
    Gring, M.
    Kuhnert, M.
    Langen, T.
    Kitagawa, T.
    Rauer, B.
    Schreitl, M.
    Mazets, I.
    Smith, D. Adu
    Demler, E.
    Schmiedmayer, J.
    [J]. SCIENCE, 2012, 337 (6100) : 1318 - 1322
  • [16] Reentrant behavior of the breathing-mode-oscillation frequency in a one-dimensional Bose gas
    Gudyma, A. Iu.
    Astrakharchik, G. E.
    Zvonarev, Mikhail B.
    [J]. PHYSICAL REVIEW A, 2015, 92 (02):
  • [17] New trends in density matrix renormalization
    Hallberg, Karen A.
    [J]. ADVANCES IN PHYSICS, 2006, 55 (5-6) : 477 - 526
  • [18] Exact diagonalization of the Hamiltonian for trapped interacting bosons in lower dimensions
    Haugset, T
    Haugerud, H
    [J]. PHYSICAL REVIEW A, 1998, 57 (05): : 3809 - 3817
  • [19] Measurement of the spatial correlation function of phase fluctuating Bose-Einstein condensates
    Hellweg, D
    Cacciapuoti, L
    Kottke, M
    Schulte, T
    Sengstock, K
    Ertmer, W
    Arlt, JJ
    [J]. PHYSICAL REVIEW LETTERS, 2003, 91 (01)
  • [20] Quasi 1 and 2d dilute bose gas in magnetic traps:: Existence of off-diagonal order and anomalous quantum fluctuations
    Ho, TL
    Ma, M
    [J]. JOURNAL OF LOW TEMPERATURE PHYSICS, 1999, 115 (1-2) : 61 - 70