Self-consistent determination of the many-body state of ultracold bosonic atoms in a one-dimensional harmonic trap

被引:10
作者
Marchukov, Oleksandr, V [1 ]
Fischer, Uwe R. [2 ]
机构
[1] Tel Aviv Univ, Fac Engn, Sch Elect Engn, IL-6997801 Tel Aviv, Israel
[2] Seoul Natl Univ, Ctr Theoret Phys, Dept Phys & Astron, Seoul 08826, South Korea
基金
以色列科学基金会;
关键词
Ultracold quantum gases; Quantum many body physics; Fragmentation; Self-consistent calculations; BOSE-EINSTEIN CONDENSATION; LONG-RANGE ORDER; QUANTUM; GAS; EXISTENCE; SYSTEMS;
D O I
10.1016/j.aop.2019.03.023
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study zero-temperature quantum fluctuations in harmonically trapped one-dimensional interacting Bose gases, using the self-consistent multiconfigurational time-dependent Hartree method. We define phase fluctuations from the full single-particle density matrix by the spatial decay exponent of off-diagonal long-range order. In a regime of mesoscopic particle numbers and moderate contact couplings, we derive the spatial dependence of the amplitude of phase fluctuations, determined from the self-consistently derived shape of the field operator orbitals and Fock space orbital occupation amplitudes. It is shown that the phase fluctuations display a peak, which in turn corresponds to a dip of the first-order correlations in position space, akin to what has previously been obtained in the Tonks-Girardeau limit of very large interactions and low densities. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:274 / 288
页数:15
相关论文
共 60 条
[11]   Maximal length of trapped one-dimensional Bose-Einstein condensates [J].
Fischer, UR .
JOURNAL OF LOW TEMPERATURE PHYSICS, 2005, 138 (3-4) :723-728
[12]   Condensate fragmentation as a sensitive measure of the quantum many-body behavior of bosons with long-range interactions [J].
Fischer, Uwe R. ;
Lode, Axel U. J. ;
Chatterjee, Budhaditya .
PHYSICAL REVIEW A, 2015, 91 (06)
[13]   Interacting trapped bosons yield fragmented condensate states in low dimensions [J].
Fischer, Uwe R. ;
Bader, Philipp .
PHYSICAL REVIEW A, 2010, 82 (01)
[14]   Stability and phase coherence of trapped 1D Bose gases [J].
Gangardt, DM ;
Shlyapnikov, GV .
PHYSICAL REVIEW LETTERS, 2003, 90 (01) :4
[15]   Relaxation and Prethermalization in an Isolated Quantum System [J].
Gring, M. ;
Kuhnert, M. ;
Langen, T. ;
Kitagawa, T. ;
Rauer, B. ;
Schreitl, M. ;
Mazets, I. ;
Smith, D. Adu ;
Demler, E. ;
Schmiedmayer, J. .
SCIENCE, 2012, 337 (6100) :1318-1322
[16]   Reentrant behavior of the breathing-mode-oscillation frequency in a one-dimensional Bose gas [J].
Gudyma, A. Iu. ;
Astrakharchik, G. E. ;
Zvonarev, Mikhail B. .
PHYSICAL REVIEW A, 2015, 92 (02)
[17]   New trends in density matrix renormalization [J].
Hallberg, Karen A. .
ADVANCES IN PHYSICS, 2006, 55 (5-6) :477-526
[18]   Exact diagonalization of the Hamiltonian for trapped interacting bosons in lower dimensions [J].
Haugset, T ;
Haugerud, H .
PHYSICAL REVIEW A, 1998, 57 (05) :3809-3817
[19]   Measurement of the spatial correlation function of phase fluctuating Bose-Einstein condensates [J].
Hellweg, D ;
Cacciapuoti, L ;
Kottke, M ;
Schulte, T ;
Sengstock, K ;
Ertmer, W ;
Arlt, JJ .
PHYSICAL REVIEW LETTERS, 2003, 91 (01)
[20]   Quasi 1 and 2d dilute bose gas in magnetic traps:: Existence of off-diagonal order and anomalous quantum fluctuations [J].
Ho, TL ;
Ma, M .
JOURNAL OF LOW TEMPERATURE PHYSICS, 1999, 115 (1-2) :61-70