Self-consistent determination of the many-body state of ultracold bosonic atoms in a one-dimensional harmonic trap

被引:10
作者
Marchukov, Oleksandr, V [1 ]
Fischer, Uwe R. [2 ]
机构
[1] Tel Aviv Univ, Fac Engn, Sch Elect Engn, IL-6997801 Tel Aviv, Israel
[2] Seoul Natl Univ, Ctr Theoret Phys, Dept Phys & Astron, Seoul 08826, South Korea
基金
以色列科学基金会;
关键词
Ultracold quantum gases; Quantum many body physics; Fragmentation; Self-consistent calculations; BOSE-EINSTEIN CONDENSATION; LONG-RANGE ORDER; QUANTUM; GAS; EXISTENCE; SYSTEMS;
D O I
10.1016/j.aop.2019.03.023
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study zero-temperature quantum fluctuations in harmonically trapped one-dimensional interacting Bose gases, using the self-consistent multiconfigurational time-dependent Hartree method. We define phase fluctuations from the full single-particle density matrix by the spatial decay exponent of off-diagonal long-range order. In a regime of mesoscopic particle numbers and moderate contact couplings, we derive the spatial dependence of the amplitude of phase fluctuations, determined from the self-consistently derived shape of the field operator orbitals and Fock space orbital occupation amplitudes. It is shown that the phase fluctuations display a peak, which in turn corresponds to a dip of the first-order correlations in position space, akin to what has previously been obtained in the Tonks-Girardeau limit of very large interactions and low densities. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:274 / 288
页数:15
相关论文
共 60 条
[1]   Multiconfigurational time-dependent Hartree method for bosons: Many-body dynamics of bosonic systems [J].
Alon, Ofir E. ;
Streltsov, Alexej I. ;
Cederbaum, Lorenz S. .
PHYSICAL REVIEW A, 2008, 77 (03)
[2]   Quantum Monte Carlo and Related Approaches [J].
Austin, Brian M. ;
Zubarev, Dmitry Yu. ;
Lester, William A., Jr. .
CHEMICAL REVIEWS, 2012, 112 (01) :263-288
[3]   Fragmented Many-Body Ground States for Scalar Bosons in a Single Trap [J].
Bader, Philipp ;
Fischer, Uwe R. .
PHYSICAL REVIEW LETTERS, 2009, 103 (06)
[4]  
Bogoliubov N. N., 1982, CLASSICS SOVIET MA 2, V2
[5]   PHASE AND ANGLE VARIABLES IN QUANTUM MECHANICS [J].
CARRUTHERS, P ;
NIETO, MM .
REVIEWS OF MODERN PHYSICS, 1968, 40 (02) :411-+
[6]   One dimensional bosons: From condensed matter systems to ultracold gases [J].
Cazalilla, M. A. ;
Citro, R. ;
Giamarchi, T. ;
Orignac, E. ;
Rigol, M. .
REVIEWS OF MODERN PHYSICS, 2011, 83 (04) :1405-1466
[7]   Center-of-mass motion as a sensitive convergence test for variational multimode quantum dynamics [J].
Cosme, Jayson G. ;
Weiss, Christoph ;
Brand, Joachim .
PHYSICAL REVIEW A, 2016, 94 (04)
[8]   Observation of phase fluctuations in elongated Bose-Einstein condensates [J].
Dettmer, S ;
Hellweg, D ;
Ryytty, P ;
Arlt, JJ ;
Ertmer, W ;
Sengstock, K ;
Petrov, DS ;
Shlyapnikov, GV ;
Kreutzmann, H ;
Santos, L ;
Lewenstein, M .
PHYSICAL REVIEW LETTERS, 2001, 87 (16) :art. no.-160406
[9]   Momentum-Space Correlations of a One-Dimensional Bose Gas [J].
Fang, Bess ;
Johnson, Aisling ;
Roscilde, Tommaso ;
Bouchoule, Isabelle .
PHYSICAL REVIEW LETTERS, 2016, 116 (05)
[10]   Existence of long-range order for trapped interacting bosons [J].
Fischer, UR .
PHYSICAL REVIEW LETTERS, 2002, 89 (28)