Self-consistent determination of the many-body state of ultracold bosonic atoms in a one-dimensional harmonic trap

被引:10
作者
Marchukov, Oleksandr, V [1 ]
Fischer, Uwe R. [2 ]
机构
[1] Tel Aviv Univ, Fac Engn, Sch Elect Engn, IL-6997801 Tel Aviv, Israel
[2] Seoul Natl Univ, Ctr Theoret Phys, Dept Phys & Astron, Seoul 08826, South Korea
基金
以色列科学基金会;
关键词
Ultracold quantum gases; Quantum many body physics; Fragmentation; Self-consistent calculations; BOSE-EINSTEIN CONDENSATION; LONG-RANGE ORDER; QUANTUM; GAS; EXISTENCE; SYSTEMS;
D O I
10.1016/j.aop.2019.03.023
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study zero-temperature quantum fluctuations in harmonically trapped one-dimensional interacting Bose gases, using the self-consistent multiconfigurational time-dependent Hartree method. We define phase fluctuations from the full single-particle density matrix by the spatial decay exponent of off-diagonal long-range order. In a regime of mesoscopic particle numbers and moderate contact couplings, we derive the spatial dependence of the amplitude of phase fluctuations, determined from the self-consistently derived shape of the field operator orbitals and Fock space orbital occupation amplitudes. It is shown that the phase fluctuations display a peak, which in turn corresponds to a dip of the first-order correlations in position space, akin to what has previously been obtained in the Tonks-Girardeau limit of very large interactions and low densities. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:274 / 288
页数:15
相关论文
共 60 条
  • [1] Multiconfigurational time-dependent Hartree method for bosons: Many-body dynamics of bosonic systems
    Alon, Ofir E.
    Streltsov, Alexej I.
    Cederbaum, Lorenz S.
    [J]. PHYSICAL REVIEW A, 2008, 77 (03):
  • [2] Quantum Monte Carlo and Related Approaches
    Austin, Brian M.
    Zubarev, Dmitry Yu.
    Lester, William A., Jr.
    [J]. CHEMICAL REVIEWS, 2012, 112 (01) : 263 - 288
  • [3] Fragmented Many-Body Ground States for Scalar Bosons in a Single Trap
    Bader, Philipp
    Fischer, Uwe R.
    [J]. PHYSICAL REVIEW LETTERS, 2009, 103 (06)
  • [4] Bogoliubov N. N., 1982, CLASSICS SOVIET MA 2, V2
  • [5] PHASE AND ANGLE VARIABLES IN QUANTUM MECHANICS
    CARRUTHERS, P
    NIETO, MM
    [J]. REVIEWS OF MODERN PHYSICS, 1968, 40 (02) : 411 - +
  • [6] One dimensional bosons: From condensed matter systems to ultracold gases
    Cazalilla, M. A.
    Citro, R.
    Giamarchi, T.
    Orignac, E.
    Rigol, M.
    [J]. REVIEWS OF MODERN PHYSICS, 2011, 83 (04) : 1405 - 1466
  • [7] Center-of-mass motion as a sensitive convergence test for variational multimode quantum dynamics
    Cosme, Jayson G.
    Weiss, Christoph
    Brand, Joachim
    [J]. PHYSICAL REVIEW A, 2016, 94 (04)
  • [8] Observation of phase fluctuations in elongated Bose-Einstein condensates
    Dettmer, S
    Hellweg, D
    Ryytty, P
    Arlt, JJ
    Ertmer, W
    Sengstock, K
    Petrov, DS
    Shlyapnikov, GV
    Kreutzmann, H
    Santos, L
    Lewenstein, M
    [J]. PHYSICAL REVIEW LETTERS, 2001, 87 (16) : art. no. - 160406
  • [9] Momentum-Space Correlations of a One-Dimensional Bose Gas
    Fang, Bess
    Johnson, Aisling
    Roscilde, Tommaso
    Bouchoule, Isabelle
    [J]. PHYSICAL REVIEW LETTERS, 2016, 116 (05)
  • [10] Existence of long-range order for trapped interacting bosons
    Fischer, UR
    [J]. PHYSICAL REVIEW LETTERS, 2002, 89 (28)