Predictive habitat suitability modeling of deep-sea framework-forming scleractinian corals in the Gulf of Mexico

被引:23
作者
Hu, Zhiyong [1 ]
Hu, Jilin [1 ]
Hu, Hongda [2 ]
Zhou, Yaguang [3 ]
机构
[1] Univ West Florid, Dept Earth & Environm Sci, 11000 Univ Pkwy, Pensacola, FL 32514 USA
[2] Guangzhou Inst Geog, 100 Xianlie Middle Rd, Guangzhou 510070, Guangdong, Peoples R China
[3] Minist Nat Resources China, Chongqing Inst Surveying & Mapping, 10 Tengfang Ave, Chongqing 401120, Peoples R China
关键词
Scleractinia; Maximum entropy; Random forest; Support vector machine; Deep neural network; LOPHELIA-PERTUSA SCLERACTINIA; POINT PROCESS; WATER; UNCERTAINTY; CURRENTS; GEOLOGY; FLORIDA; GROWTH; SLOPE; REEFS;
D O I
10.1016/j.scitotenv.2020.140562
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Framework-forming scleractinian (FFS) corals provide structurally complex habitats to support abundant and diverse benthic communities but are vulnerable to environmental changes and anthropogenic disturbances. Scientific modeling of suitable habitat provides important insights into the impact of the environmental conditions and fills the gap in the knowledge on habitat suitability. This study presents predictive habitat suitability modeling for deep-sea (depth > 50 in) FFS corals in the GoM. We first conducted a nonparametric estimate of the observed coral point process intensity as a function of each numeric environmental variable. Next, we performed species distribution modeling (SDM) using an assemble of four machine learning models - maximum entropy (ME), support vector machine (SVM), random forest (RF), and deep neural network (DNN). We found that most important variables controlling the coral distribution are super-dominant gravel and rock substrata. SW and SE aspects, slope steepness, salinity, depth, temperature, acidity, dissolved oxygen, and chlorophyll-a. Highly suitable habitats are predicted to be on the continental slope off Texas, Louisiana, and Mississippi and the shelf and slope of the West Florida Escarpment. All the four models have outstanding prediction performances with AUC values over 095. DNN model performs best (AUC - 0987). The study contributes to coral habitat modeling research by presenting unique methods induding nonparametric function of coral point process intensity. DNN and SVM models that have not been used in coral SDM, post-classification model assembling, and percentile approach to determine a threshold value for classifying a suitability score map into a binary map. Our findings would help support conservation prioritization, management and planning, and guide new field exploration. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:22
相关论文
共 84 条
  • [1] Field validation of habitat suitability models for vulnerable marine ecosystems in the South Pacific Ocean: Implications for the use of broad-scale models in fisheries management
    Anderson, Owen F.
    Guinotte, John M.
    Rowden, Ashley A.
    Clark, Malcolm R.
    Mormede, Sophie
    Davies, Andrew J.
    Bowden, David A.
    [J]. OCEAN & COASTAL MANAGEMENT, 2016, 120 : 110 - 126
  • [2] [Anonymous], **DATA OBJECT**, DOI DOI 10.5285/836F016A-33BE-6DDC-E053-6C86ABC0788E
  • [3] [Anonymous], 2017, Circle
  • [4] Ensemble forecasting of species distributions
    Araujo, Miguel B.
    New, Mark
    [J]. TRENDS IN ECOLOGY & EVOLUTION, 2007, 22 (01) : 42 - 47
  • [5] Baddeley A, 2016, CHAP HALL CRC INTERD, P1
  • [6] Baddeley A, 2012, STAT INTERFACE, V5, P221
  • [7] Predictive habitat modeling in two Mediterranean canyons including hydrodynamic variables
    Bargain, A.
    Foglini, F.
    Pairaud, I.
    Bonaldo, D.
    Carniel, S.
    Angeletti, L.
    Taviani, M.
    Rochette, S.
    Fabri, M. C.
    [J]. PROGRESS IN OCEANOGRAPHY, 2018, 169 : 151 - 168
  • [8] BARNETTE MC, 2006, NMFSSEFSC535 NOAA
  • [9] Bauer L., 2016, MARINE BIOGEOGRAPHIC
  • [10] Global Bathymetry and Elevation Data at 30 Arc Seconds Resolution: SRTM30_PLUS
    Becker, J. J.
    Sandwell, D. T.
    Smith, W. H. F.
    Braud, J.
    Binder, B.
    Depner, J.
    Fabre, D.
    Factor, J.
    Ingalls, S.
    Kim, S-H.
    Ladner, R.
    Marks, K.
    Nelson, S.
    Pharaoh, A.
    Trimmer, R.
    Von Rosenberg, J.
    Wallace, G.
    Weatherall, P.
    [J]. MARINE GEODESY, 2009, 32 (04) : 355 - 371