Different quality indexes for lattice rules

被引:5
作者
Cools, R
Reztsov, A
机构
[1] KATHOLIEKE UNIV LEUVEN,DEPT COMP SCI,B-3001 HEVERLEE,BELGIUM
[2] UNIV AUCKLAND,DEPT IND & APPL MATH,DIV SCI & TECHNOL,AUCKLAND 1,NEW ZEALAND
关键词
D O I
10.1006/jcom.1997.0443
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider lattice rules (i.e. cubature formulas with equal coefficients whose nodes lie on a lattice) which are exact for trigonometric polynomials in two variables with different spectra. Various quality indexes are characterized. Extremal properties of indexes are obtained. A new family of lattice rules of trigonometric degree is presented. Also a family of lattice rules exact on trigonometric polynomials of a hexagonal spectrum is constructed. (C) 1997 Academic Press.
引用
收藏
页码:235 / 258
页数:24
相关论文
共 20 条
[1]  
BABENKO KI, 1960, DOKL AKAD NAUK SSSR+, V132, P247
[2]  
BABENKO KI, 1960, DOKL AKAD NAUK SSSR+, V132, P982
[3]  
BAHVALOV NS, 1959, VES MOS U M, V4, P3
[4]  
Becker GF, 1892, GEOL SOC AM BULL, V4, P13
[5]   Minimal cubature formulae of trigonometric degree [J].
Cools, R ;
Sloan, IH .
MATHEMATICS OF COMPUTATION, 1996, 65 (216) :1583-1600
[6]  
Hardy GodfreyHarold., 1979, An Introduction to the Theory of Numbers, V5
[7]  
Judin V. A., 1973, MATH NOTES, V13, P817
[8]  
Korobov N. M., 1963, Teoretiko-chislovye metody v priblizhennom analize
[9]  
MYSOVSKIKH IP, 1987, DOKL AKAD NAUK SSSR+, V296, P28
[10]   INTEGRATION OF NONPERIODIC FUNCTIONS OF 2 VARIABLES BY FIBONACCI LATTICE RULES [J].
NIEDERREITER, H ;
SLOAN, IH .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1994, 51 (01) :57-70