Magnesium Ion-Conducting Biopolymer Electrolytes Based on Carboxymethyl Cellulose Derived from Palm Oil Empty Fruit Bunch Fibre

被引:11
作者
Rani, M. S. A. [1 ,2 ]
Isa, N. S. [3 ]
Sainorudin, M. H. [1 ]
Abdullah, N. A. [1 ]
Mohammad, M. [1 ]
Asim, N. [1 ]
Razali, H. [1 ]
Ibrahim, M. A. [1 ]
机构
[1] Univ Kebangsaan Malaysia, Solar Energy Res Inst SERI, Bangi 43600, Selangor, Malaysia
[2] Natl Def Univ Malaysia, Res Ctr Tropicalisat, Kuala Lumpur 57000, Malaysia
[3] Kolej Komuniti Rembau, Jabatan Agroteknol & Bioind, Rembau 71400, Negeri Sembilan, Malaysia
来源
INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE | 2021年 / 16卷 / 03期
关键词
carboxymethyl cellulose; biosourced polymer electrolytes; magnesium acetate; electrical studies; POLYMER ELECTROLYTE; TEMPERATURE; BEHAVIOR;
D O I
10.20964/2021.03.08
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
As demands for global lithium supplies have raised questions about the sustainability of the supply of lithium, a potential alternative to lithium batteries has been developed. New biodegradable-carboxymethyl cellulose (CMC) extracted from empty fruit bunches of palm oil is used to produce biopolymer electrolytes (BPE) using magnesium acetate salt. Solution casting has been used to prepare biopolymer electrolytes in various ratios of magnesium acetate. Via Fourier transform infrared characterisation, electrochemical impedance spectroscopy, transference number measurements and linear sweep voltammetry, studies on the structural, electrical and electrochemical behaviour of CMC were conducted. Upon the addition of 20 wt% of magnesium acetate, the highest ionic conductivity of 1.83 x 10(-3 )S cm(-1) at ambient temperature was achieved. The interactions between CMC and magnesium acetate were verified by the Fourier transform infrared results. Electrochemical stability of more than 2 V was shown by the biosourced polymer electrolytes, whereas the measurement of transference number showed that electrolytic conduction was dominated by ions.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 32 条
  • [1] Poly(ethylene oxide) (PEO) - Poly(vinyl pyrrolidone) (PVP) blend polymer based solid electrolyte membranes for developing solid state magnesium ion cells
    Anilkumar, K. M.
    Jinisha, B.
    Manoj, M.
    Jayalekshmi, S.
    [J]. EUROPEAN POLYMER JOURNAL, 2017, 89 : 249 - 262
  • [2] Ionic conductivity by correlated barrier hopping in NH4I doped chitosan solid electrolyte
    Buraidah, M. H.
    Teo, L. P.
    Majid, S. R.
    Arof, A. K.
    [J]. PHYSICA B-CONDENSED MATTER, 2009, 404 (8-11) : 1373 - 1379
  • [3] Composite Polymer Electrolyte for Highly Cyclable Room-Temperature Solid-State Magnesium Batteries
    Deivanayagam, Ramasubramonian
    Cheng, Meng
    Wang, Mingchao
    Vasudevan, Vallabh
    Foroozan, Tara
    Medhekar, Nikhil V.
    Shahbazian-Yassar, Reza
    [J]. ACS APPLIED ENERGY MATERIALS, 2019, 2 (11) : 7980 - 7990
  • [4] Progress in development of electrolytes for magnesium batteries
    Deivanayagam, Ramasubramonian
    Ingram, Brian J.
    Shahbazian-Yassar, Reza
    [J]. ENERGY STORAGE MATERIALS, 2019, 21 : 136 - 153
  • [5] Sodium and sodium-ion energy storage batteries
    Ellis, Brian L.
    Nazar, Linda F.
    [J]. CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2012, 16 (04) : 168 - 177
  • [6] Preparation and characterization of Mg2+-ion conducting composite based on poly(vinyl alcohol) with various concentrations of Li2O
    Gamal, Rania
    Sheha, Eslam
    Shash, Nabil
    El-Shaarawy, Mervat G.
    [J]. MATERIALS EXPRESS, 2014, 4 (04) : 293 - 300
  • [7] High cycling stability of zinc-anode/conducting polymer rechargeable battery with non-aqueous electrolyte
    Guerfi, A.
    Trottier, J.
    Boyano, I.
    De Meatza, I.
    Blazquez, J. A.
    Brewer, S.
    Ryder, K. S.
    Vijh, A.
    Zaghib, K.
    [J]. JOURNAL OF POWER SOURCES, 2014, 248 : 1099 - 1104
  • [8] Effect of sintering temperature on the structural, electrical and electrochemical properties of novel Mg0.5Si2 (PO4)3 ceramic electrolytes
    Halim, Z. A.
    Adnan, S. B. R. S.
    Mohamed, N. S.
    [J]. CERAMICS INTERNATIONAL, 2016, 42 (03) : 4452 - 4461
  • [9] Hamsan H., 2020, POLYM TEST
  • [10] Effect of AgBr on the electrical conductivity of β-AgI
    Jurado, JF
    Trujillo, JA
    Mellander, BE
    Vargas, RA
    [J]. SOLID STATE IONICS, 2003, 156 (1-2) : 103 - 112