Regularity Criteria for the Dissipative Quasi-Geostrophic Equations in Holder Spaces

被引:29
作者
Dong, Hongjie [1 ]
Pavlovic, Natasa [2 ]
机构
[1] Brown Univ, Div Appl Math, Providence, RI 02912 USA
[2] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
GLOBAL WELL-POSEDNESS; MAXIMUM PRINCIPLE;
D O I
10.1007/s00220-009-0756-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study regularity criteria for weak solutions of the dissipative quasi-geostrophic equation (with dissipation (- Delta)(gamma/2), 0 < gamma <= 1). We show in this paper that if theta is an element of C((0, T); C1-gamma), or theta is an element of L-r((0, T); C-alpha) with alpha = 1 - gamma + gamma/r is a weak solution of the 2D quasi-geostrophic equation, then theta is a classical solution in (0, T] x R-2. This result improves our previous result in [18].
引用
收藏
页码:801 / 812
页数:12
相关论文
共 29 条
[1]  
CAFFARELLI LA, ANN MATH IN PRESS
[2]   On the regularity conditions for the dissipative quasi-geostrophic equations [J].
Chae, D .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2006, 37 (05) :1649-1656
[3]   The quasi-geostrophic equation in the Triebel-Lizorkin spaces [J].
Chae, D .
NONLINEARITY, 2003, 16 (02) :479-495
[4]   Global well-posedness in the super-critical dissipative quasi-geostrophic equations [J].
Chae, D ;
Lee, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 233 (02) :297-311
[5]   A new Bernstein's inequality and the 2D dissipative quasi-geostrophic equation [J].
Chen, Qionglei ;
Miao, Changxing ;
Zhang, Zhifei .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 271 (03) :821-838
[6]   Energy conservation and Onsager's conjecture for the Euler equations [J].
Cheskidov, A. ;
Constantin, P. ;
Friedlander, S. ;
Shvydkoy, R. .
NONLINEARITY, 2008, 21 (06) :1233-1252
[7]  
CHESKIDOV A, 2007, REGULARITY WEAK SOLU
[8]   FORMATION OF STRONG FRONTS IN THE 2-D QUASI-GEOSTROPHIC THERMAL ACTIVE SCALAR [J].
CONSTANTIN, P ;
MAJDA, AJ ;
TABAK, E .
NONLINEARITY, 1994, 7 (06) :1495-1533
[9]   On the critical dissipative quasi-geostrophic equation [J].
Constantin, P ;
Cordoba, D ;
Wu, JH .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2001, 50 :97-107
[10]   Behavior of solutions of 2D quasi-geostrophic equations [J].
Constantin, P ;
Wu, JH .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1999, 30 (05) :937-948