Data-driven glass/ceramic science research: Insights from the glass and ceramic and data science/informatics communities

被引:19
|
作者
De Guire, Eileen [1 ]
Bartolo, Laura [2 ]
Brindle, Ross [3 ]
Devanathan, Ram [4 ]
Dickey, Elizabeth C. [5 ]
Fessler, Justin [6 ]
French, Roger H. [7 ]
Fotheringham, Ulrich [8 ]
Harmer, Martin [9 ]
Lara-Curzio, Edgar [10 ]
Lichtner, Sarah [3 ]
Maillet, Emmanuel [11 ]
Mauro, John [12 ]
Mecklenborg, Mark [1 ]
Meredig, Bryce [13 ]
Rajan, Krishna [14 ]
Rickman, Jeffrey [9 ]
Sinnott, Susan [12 ]
Spahr, Charlie [1 ]
Suh, Changwon [3 ]
Tandia, Adama [15 ]
Ward, Logan [16 ]
Weber, Rick [17 ]
机构
[1] Amer Ceram Soc, 550 Polaris Pkwy,Ste 510, Westerville, OH 43082 USA
[2] Northwestern Univ, Northwestern Argonne Inst Sci & Engn, Evanston, IL USA
[3] Nexight Grp, Silver Spring, MD USA
[4] Pacific Northwest Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA
[5] North Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC USA
[6] IBM Watson, Arlington, VA USA
[7] Case Western Reserve Univ, Dept Mat Sci & Engn, Cleveland, OH 44106 USA
[8] SCHOTT AG, Mainz, Germany
[9] Lehigh Univ, Dept Mat Sci & Engn, Bethlehem, PA 18015 USA
[10] Oak Ridge Natl Lab, Mech Properties & Mech Grp, Oak Ridge, TN USA
[11] GE Global Res, Mat Sci & Engn, Niskayuna, NY USA
[12] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA
[13] Citrine Informat, Redwood City, CA USA
[14] Univ Buffalo, Dept Mat Design & Innovat, Buffalo, NY USA
[15] Corning Inc, Corning, NY 14831 USA
[16] Univ Chicago, Globus Labs, Chicago, IL 60637 USA
[17] Mat Dev Inc, Arlington Hts, IL USA
基金
美国国家科学基金会;
关键词
glass; modeling; model; simulation; DESIGN; OPTIMIZATION; DISCOVERY; ANALYTICS;
D O I
10.1111/jace.16677
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Data-driven science and technology have helped achieve meaningful technological advancements in areas such as materials/drug discovery and health care, but efforts to apply high-end data science algorithms to the areas of glass and ceramics are still limited. Many glass and ceramic researchers are interested in enhancing their work by using more data and data analytics to develop better functional materials more efficiently. Simultaneously, the data science community is looking for a way to access materials data resources to test and validate their advanced computational learning algorithms. To address this issue, The American Ceramic Society (ACerS) convened a Glass and Ceramic Data Science Workshop in February 2018, sponsored by the National Institute for Standards and Technology (NIST) Advanced Manufacturing Technologies (AMTech) program. The workshop brought together a select group of leaders in the data science, informatics, and glass and ceramics communities, ACerS, and Nexight Group to identify the greatest opportunities and mechanisms for facilitating increased collaboration and coordination between these communities. This article summarizes workshop discussions about the current challenges that limit interactions and collaboration between the glass and ceramic and data science communities, opportunities for a coordinated approach that leverages existing knowledge in both communities, and a clear path toward the enhanced use of data science technologies for functional glass and ceramic research and development.
引用
收藏
页码:6385 / 6406
页数:22
相关论文
共 45 条
  • [1] Data-driven modeling and learning in science and engineering
    Montans, Francisco J.
    Chinesta, Francisco
    Gomez-Bombarelli, Rafael
    Kutz, J. Nathan
    COMPTES RENDUS MECANIQUE, 2019, 347 (11): : 845 - 855
  • [2] The role of ceramic and glass science research in meeting societal challenges: Report from an NSF-sponsored workshop
    Faber, Katherine T.
    Asefa, Tewodros
    Backhaus-Ricoult, Monika
    Brow, Richard
    Chan, Julia Y.
    Dillon, Shen
    Fahrenholtz, William G.
    Finnis, Michael W.
    Garay, Javier E.
    Garcia, R. Edwin
    Gogotsi, Yury
    Haile, Sossina M.
    Halloran, John
    Hu, Juejun
    Huang, Liping
    Jacobsen, Steven D.
    Lara-Curzio, Edgar
    LeBeau, James
    Lee, William E.
    Levi, Carlos G.
    Levin, Igor
    Lewis, Jennifer A.
    Lipkin, Don M.
    Lu, Kathy
    Luo, Jian
    Maria, Jon-Paul
    Martin, Lane W.
    Martin, Steve
    Messing, Gary
    Navrotsky, Alexandra
    Padture, Nitin P.
    Randall, Clive
    Rohrer, Gregory S.
    Rosenflanz, Anatoly
    Schaedler, Tobias A.
    Schlom, Darrell G.
    Sehirlioglu, Alp
    Stevenson, Adam J.
    Tani, Toshihiko
    Tikare, Veena
    Trolier-McKinstry, Susan
    Wang, Hong
    Yildiz, Bilge
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2017, 100 (05) : 1777 - 1803
  • [3] Toward the Data-Driven Dissemination of Findings From Psychological Science
    Purtle, Jonathan
    Marzalik, Jacob S.
    Halfond, Raquel W.
    Bufka, Lynn F.
    Teachman, Bethany A.
    Aarons, Gregory A.
    AMERICAN PSYCHOLOGIST, 2020, 75 (08) : 1052 - 1066
  • [4] Data-Driven Multiscale Science for Tread Compounding
    Burkhart, Craig
    Jiang, Bing
    Papakonstantopoulos, George
    Polinska, Patrycja
    Xu, Hongyi
    Sheridan, Richard J.
    Brinson, L. Catherine
    Chen, Wei
    TIRE SCIENCE AND TECHNOLOGY, 2023, 51 (02) : 114 - 131
  • [5] Data-Driven Computational Social Science: A Survey
    Zhang, Jun
    Wang, Wei
    Xia, Feng
    Lin, Yu-Ru
    Tong, Hanghang
    BIG DATA RESEARCH, 2020, 21
  • [6] Smart City Data Science: Towards data-driven smart cities with open research issues
    Sarker, Iqbal H.
    INTERNET OF THINGS, 2022, 19
  • [7] Integration of data science with product design towards data-driven design
    Liu, Ang
    Lu, Stephen
    Tao, Fei
    Anwer, Nabil
    CIRP ANNALS-MANUFACTURING TECHNOLOGY, 2024, 73 (02) : 509 - 532
  • [8] Data-Driven Materials Science: Status, Challenges, and Perspectives
    Himanen, Lauri
    Geurts, Amber
    Foster, Adam Stuart
    Rinke, Patrick
    ADVANCED SCIENCE, 2019, 6 (21)
  • [9] Data-Driven Identification and Analysis of the Glass Transition in Polymer Melts
    Banerjee, Atreyee
    Hsu, Hsiao-Ping
    Kremer, Kurt
    Kukharenko, Oleksandra
    ACS MACRO LETTERS, 2023, 12 (06) : 679 - 684
  • [10] CLAVIRE: e-Science infrastructure for data-driven computing
    Knyazkov, Konstantin V.
    Kovalchuk, Sergey V.
    Tchurov, Timofey N.
    Maryin, Sergey V.
    Boukhanovsky, Alexander V.
    JOURNAL OF COMPUTATIONAL SCIENCE, 2012, 3 (06) : 504 - 510