Evaluation of fin intensified phase change material systems for thermal management of Li-ion battery modules

被引:103
作者
Fan, Ruijin [1 ]
Zheng, Nianben [1 ]
Sun, Zhiqiang [1 ]
机构
[1] Cent South Univ, Sch Energy Sci & Engn, Changsha 410083, Peoples R China
关键词
Battery thermal management; PCM; Fin; Intensified heat transfer; ENHANCED PCM; PERFORMANCE; MICROENCAPSULATION; BEHAVIOR;
D O I
10.1016/j.ijheatmasstransfer.2020.120753
中图分类号
O414.1 [热力学];
学科分类号
摘要
The low thermal conductivity of phase change materials (PCM) dramatically hinders the PCM-based battery thermal management systems (BTMSs). In this work, metal fin intensified PCM systems were proposed for thermal control of Li-ion battery modules. Single-cell experiments were firstly performed to validate the model. The influences of the thermal management systems, distribution of fins, length of fins, and ambient temperature on the thermal behaviors of the battery modules were then numerically investigated by ANSYS Fluent. The results indicated that metal fins increased the heat exchange area and formed a multi-channel high thermal conduction network, which could intensify the heat dissipation rate and increase the working time by 98.4% compared with the PCM system. Modification of the distribution of fins resulted in more uniform thermal conduction networks and improved the working time by up to 15.2%. Extending the fins helped to expand the network. The working time was further enhanced by 8.3% by increasing the length of fins from 7.5 to 13.5 mm. Besides, the proposed fin intensified systems could work efficiently, even under high-temperature conditions. The corresponding working time was increased by 1.48, 1.49, and 1.81 times for the ambient temperature of 20, 30, and 40 degrees C, respectively, compared to the PCM system, demonstrating the superiorities of the fin intensified PCM systems over the PCM systems. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:14
相关论文
共 52 条
[1]   Investigation of fin application effects on melting time in a latent thermal energy storage system with phase change material (PCM) [J].
Acir, Adem ;
Canli, Mehmet Emin .
APPLIED THERMAL ENGINEERING, 2018, 144 :1071-1080
[2]  
Al Hallaj S, 2000, J ELECTROCHEM SOC, V147, P3231, DOI 10.1149/1.1393888
[3]   Recent advancements in PV cooling and efficiency enhancement integrating phase change materials based systems - A comprehensive review [J].
Ali, Hafiz Muhammad .
SOLAR ENERGY, 2020, 197 :163-198
[4]   Applications of combined/hybrid use of heat pipe and phase change materials in energy storage and cooling systems: A recent review [J].
Ali, Hafiz Muhammad .
JOURNAL OF ENERGY STORAGE, 2019, 26
[5]   Thermal management of electronics devices with PCMs filled pin-fin heat sinks: A comparison [J].
Ali, Hafiz Muhammad ;
Arshad, Adeel ;
Jabbal, Mark ;
Verdin, P. G. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2018, 117 :1199-1204
[6]  
[Anonymous], [No title captured]
[7]  
[Anonymous], [No title captured]
[8]  
[Anonymous], [No title captured]
[9]   Enhancement of PCM melting rate via internal fin and nanoparticles [J].
Arici, Muslum ;
Tutuncu, Ensar ;
Yildiz, Cagatay ;
Li, Dong .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2020, 156
[10]   Effects of different phase change material thermal management strategies on the cooling performance of the power lithium ion batteries: A review [J].
Chen, Jingwei ;
Kang, Siyi ;
Jiaqiang, E. ;
Huang, Zhonghua ;
Wei, Kexiang ;
Zhang, Bin ;
Zhu, Hao ;
Deng, Yuanwang ;
Zhang, Feng ;
Liao, Gaoliang .
JOURNAL OF POWER SOURCES, 2019, 442