ON THE EIGENSPACES OF LAMPLIGHTER RANDOM WALKS AND PERCOLATION CLUSTERS ON GRAPHS

被引:2
作者
Lehner, Franz [1 ]
机构
[1] Inst Math Strukturtheorie, A-8010 Graz, Austria
关键词
Wreath product; percolation; random walk; spectral measure; point spectrum; eigenfunctions;
D O I
10.1090/S0002-9939-09-09869-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the Plancherel measure of the lamplighter random walk on a graph coincides with the expected spectral measure of the absorbing random walk on the Bernoulli percolation clusters. In the subcritical regime the spectrum is pure point and we construct a complete orthonormal basis consisting of finitely supported eigenfunctions.
引用
收藏
页码:2631 / 2637
页数:7
相关论文
共 3 条
[1]   Speetral computations on lamplighter groups and Diestel-Leader graphs [J].
Bartholdi, L ;
Woess, W .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2005, 11 (02) :175-202
[2]   On a question of Atiyah [J].
Grigorchuk, RI ;
Linnell, P ;
Schick, T ;
Zuk, A .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 331 (09) :663-668
[3]   On the spectrum of lamplighter groups and percolation clusters [J].
Lehner, Franz ;
Neuhauser, Markus ;
Woess, Wolfgang .
MATHEMATISCHE ANNALEN, 2008, 342 (01) :69-89