Distributed subglacial discharge drives significant submarine melt at a Greenland tidewater glacier

被引:126
作者
Fried, M. J. [1 ,2 ]
Catania, G. A. [1 ,2 ]
Bartholomaus, T. C. [1 ]
Duncan, D. [1 ]
Davis, M. [1 ]
Stearns, L. A. [3 ]
Nash, J. [4 ]
Shroyer, E. [4 ]
Sutherland, D. [5 ]
机构
[1] Univ Texas Austin, Inst Geophys, Austin, TX 78712 USA
[2] Univ Texas Austin, Dept Geol, Austin, TX 78712 USA
[3] Univ Kansas, Dept Geol, Lawrence, KS 66045 USA
[4] Oregon State Univ, Coll Earth Ocean & Atmospher Sci, Corvalis, OR USA
[5] Univ Oregon, Dept Geol Sci, Eugene, OR 97403 USA
关键词
ICE-SHEET; WEST GREENLAND; MELTWATER PLUMES; LECONTE GLACIER; FJORD; CIRCULATION; TERMINUS; DYNAMICS; ALASKA;
D O I
10.1002/2015GL065806
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Submarine melt can account for substantial mass loss at tidewater glacier termini. However, the processes controlling submarine melt are poorly understood due to limited observations of submarine termini. Here at a tidewater glacier in central West Greenland, we identify subglacial discharge outlets and infer submarine melt across the terminus using direct observations of the submarine terminus face. We find extensive melting associated with small discharge outlets. While the majority of discharge is routed to a single, large channel, outlets not fed by large tributaries drive submarine melt rates in excess of 3.0 m d(-1) and account for 85% of total estimated melt across the terminus. Nearly the entire terminus is undercut, which may intersect surface crevasses and promote calving. Severe undercutting constricts buoyant outflow plumes and may amplify melt. The observed morphology and melt distribution motivate more realistic treatments of terminus shape and subglacial discharge in submarine melt models.
引用
收藏
页码:9328 / 9336
页数:9
相关论文
共 33 条
[1]  
[Anonymous], 2010, PHYS GLACIERS, DOI DOI 10.3189/002214311796405906
[2]   Does calving matter? Evidence for significant submarine melt [J].
Bartholomaus, Timothy C. ;
Larsen, Christopher F. ;
O'Neel, Shad .
EARTH AND PLANETARY SCIENCE LETTERS, 2013, 380 :21-30
[3]   Modeling Turbulent Subglacial Meltwater Plumes: Implications for Fjord-Scale Buoyancy-Driven Circulation [J].
Carroll, Dustin ;
Sutherland, David A. ;
Shroyer, Emily L. ;
Nash, Jonathan D. ;
Catania, Ginny A. ;
Stearns, Leigh A. .
JOURNAL OF PHYSICAL OCEANOGRAPHY, 2015, 45 (08) :2169-2185
[4]   Ice-ocean interaction and calving front morphology at two west Greenland tidewater outlet glaciers [J].
Chauche, N. ;
Hubbard, A. ;
Gascard, J. -C. ;
Box, J. E. ;
Bates, R. ;
Koppes, M. ;
Sole, A. ;
Christoffersen, P. ;
Patton, H. .
CRYOSPHERE, 2014, 8 (04) :1457-1468
[5]   An improved mass budget for the Greenland ice sheet [J].
Enderlin, Ellyn M. ;
Howat, Ian M. ;
Jeong, Seongsu ;
Noh, Myoung-Jong ;
van Angelen, Jan H. ;
van den Broeke, Michiel R. .
GEOPHYSICAL RESEARCH LETTERS, 2014, 41 (03) :866-872
[6]   Higher surface mass balance of the Greenland ice sheet revealed by high-resolution climate modeling [J].
Ettema, Janneke ;
van den Broeke, Michiel R. ;
van Meijgaard, Erik ;
van de Berg, Willem Jan ;
Bamber, Jonathan L. ;
Box, Jason E. ;
Bales, Roger C. .
GEOPHYSICAL RESEARCH LETTERS, 2009, 36
[7]  
Howat I.M., 2014, The Cryosphere Discuss, V8, P453, DOI [10.5194/tcd-8-453-2014, DOI 10.5194/TCD-8-453-2014]
[8]   Oceanic heat delivery via Kangerdlugssuaq Fjord to the south-east Greenland ice sheet [J].
Inall, Mark E. ;
Murray, Tavi ;
Cottier, Finlo R. ;
Scharrer, Kilian ;
Boyd, Timothy J. ;
Heywood, Karen J. ;
Bevan, Suzanne L. .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2014, 119 (02) :631-645
[9]   Convection-Driven Melting near the Grounding Lines of Ice Shelves and Tidewater Glaciers [J].
Jenkins, Adrian .
JOURNAL OF PHYSICAL OCEANOGRAPHY, 2011, 41 (12) :2279-2294
[10]  
Joughin I., 2014, MEASURES GREENLAND I