Advanced asymmetric supercapacitors based on CNT@Ni(OH)2 core-shell composites and 3D graphene networks

被引:143
作者
Yi, Huan [1 ,2 ]
Wang, Huanwen [1 ,2 ]
Jing, Yuting [1 ,2 ]
Peng, Tianquan [1 ,2 ]
Wang, Yiran [3 ]
Guo, Jiang [3 ]
He, Qingliang [3 ]
Guo, Zhanhu [3 ]
Wang, Xuefeng [1 ,2 ]
机构
[1] Tongji Univ, Dept Chem, Shanghai 200092, Peoples R China
[2] Tongji Univ, Shanghai Key Lab Chem Assessment & Sustainabil, Shanghai 200092, Peoples R China
[3] Univ Tennessee, Dept Chem & Biochem Engn, Integrated Composites Lab, Knoxville, TN 37996 USA
关键词
HIGH-ENERGY; NICKEL-HYDROXIDE; ELECTROCHEMICAL CAPACITOR; CARBON NANOTUBES; OXIDE; HYDROGEL; DENSITY; REVERSIBILITY; ELECTRODES; NANOSHEETS;
D O I
10.1039/c5ta06174a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Asymmetric supercapacitors (ASCs) with carbon nanotube@nickel hydroxide nanosheet (CNT@Ni(OH)(2)) core-shell composites as positive electrodes and three-dimensional (3D) graphene networks (3DGNs) as negative electrodes were reported in aqueous KOH electrolyte. The CNT@Ni(OH)(2) core-shell composites were prepared through a facile chemical bath deposition method, while 3DGNs were obtained by freeze-drying of graphene hydrogels. By virtue of their unique microstructures, superb electrochemical properties were achieved in a three-electrode system, e.g., 1136 F g(-1) at 2 A g(-1) for the CNT@Ni(OH)(2) electrode within 0-0.5 V and 203 F g(-1) at 1 A g(-1) for the 3DGN electrode within -1-0 V. Benefiting from these merits, the as-fabricated CNT@Ni(OH)(2)//3DGN ASC showed a maximum energy density of 44.0 W h kg(-1) at a power density of 800 W kg(-1) and even retained 19.6 W h kg(-1) at 16 000 W kg-(1) in the voltage region of 0-1.6 V.
引用
收藏
页码:19545 / 19555
页数:11
相关论文
共 55 条
[1]   Graphene Materials for Electrochemical Capacitors [J].
Chen, Ji ;
Li, Chun ;
Shi, Gaoquan .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2013, 4 (08) :1244-1253
[2]   One-step synthesis of low defect density carbon nanotube-doped Ni(OH)2 nanosheets with improved electrochemical performances [J].
Chen, Sheng ;
Zhu, Junwu ;
Zhou, Hui ;
Wang, Xin .
RSC ADVANCES, 2011, 1 (03) :484-489
[3]   One-pot hydrothermal synthesis of reduced graphene oxide/carbon nanotube/α-Ni(OH)2 composites for high performance electrochemical supercapacitor [J].
Chen, Xi'an ;
Chen, Xiaohua ;
Zhang, Fengqiao ;
Yang, Zhi ;
Huang, Shaming .
JOURNAL OF POWER SOURCES, 2013, 243 :555-561
[4]   MWCNT/V2O5 Core/Shell Sponge for High Areal Capacity and Power Density Li-Ion Cathodes [J].
Chen, Xinyi ;
Zhu, Hongli ;
Chen, Yu-Chen ;
Shang, Yuanyuan ;
Cao, Anyuan ;
Hu, Liangbing ;
Rubloff, Gary W. .
ACS NANO, 2012, 6 (09) :7948-7955
[5]   Graphene-MnO2 and graphene asymmetrical electrochemical capacitor with a high energy density in aqueous electrolyte [J].
Deng, Lingjuan ;
Zhu, Gang ;
Wang, Jianfang ;
Kang, Liping ;
Liu, Zong-Huai ;
Yang, Zupei ;
Wang, Zenglin .
JOURNAL OF POWER SOURCES, 2011, 196 (24) :10782-10787
[6]   One-step synthesis of free-standing α-Ni(OH)2 nanosheets on reduced graphene oxide for high-performance supercapacitors [J].
Dong, Bitao ;
Zhou, Han ;
Liang, Jin ;
Zhang, Lusi ;
Gao, Guoxin ;
Ding, Shujiang .
NANOTECHNOLOGY, 2014, 25 (43)
[7]   Electrochemistry at carbon nanotubes: perspective and issues [J].
Dumitrescu, Ioana ;
Unwin, Patrick R. ;
Macpherson, Julie V. .
CHEMICAL COMMUNICATIONS, 2009, (45) :6886-6901
[8]  
Gao B., 2008, J SOLID STATE ELECTR, V13, P1251
[9]   High-Performance Asymmetric Supercapacitor Based on Graphene Hydrogel and Nanostructured MnO2 [J].
Gao, Hongcai ;
Xiao, Fei ;
Ching, Chi Bun ;
Duan, Hongwei .
ACS APPLIED MATERIALS & INTERFACES, 2012, 4 (05) :2801-2810
[10]   Nanoporous metal based flexible asymmetric pseudocapacitors [J].
Hou, Ying ;
Chen, Luyang ;
Liu, Pan ;
Kang, Jianli ;
Fujita, Takeshi ;
Chen, Mingwei .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (28) :10910-10916