Novel Flower-like Nickel Sulfide as an Efficient Electrocatalyst for Nonaqueous Lithium-Air Batteries

被引:61
作者
Ma, Zhong [1 ]
Yuan, Xianxia [1 ]
Zhang, Zhenlin [1 ]
Mei, Delong [1 ]
Li, Lin [1 ]
Ma, Zi-Feng [1 ]
Zhang, Lei [2 ]
Yang, Jun [1 ]
Zhang, Jiujun [2 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Chem Engn, Shanghai 200240, Peoples R China
[2] Natl Res Council Canada, NRC Energy Min & Environm Portfolio, Vancouver, BC V6T 1W5, Canada
基金
中国国家自然科学基金;
关键词
HIGH-PERFORMANCE; CATHODE CATALYST; OXYGEN; GRAPHENE; ELECTRODE; NANOCOMPOSITE; MORPHOLOGY; REDUCTION; HYBRID; ION;
D O I
10.1038/srep18199
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, metal sulfide materials have been explored for the first time as a new choice of bifunctional cathode electrocatalyst materials for non-aqueous lithium-air batteries (LABs). Nickel sulfides with two different morphologies of flower-like (f-NiS) and rod-like (r-NiS) are successfully synthesized using a hydrothermal method with and without the assistance of cetyltrimethyl ammonium bromide. As LAB cathode catalysts, both f-NiS and r-NiS demonstrate excellent catalytic activities towards the formation and decomposition of Li2O2, resulting in improved specific capacity, reduced overpotentials and enhanced cycling performance when compared to those of pure Super P based electrode. Moreover, the morphology of NiS materials can greatly affect LAB performance. Particularly, the f-NiS is more favorable than r-NiS in terms of their application in LABs. When compared to both r-NiS and pure super P materials as LAB cathode materials, this f-NiS catalyst material can give the highest capacity of 6733 mA h g(-1) and the lowest charge voltage of 4.24 V at the current density of 75 mA g(-1) and also exhibit an quite stable cycling performance.
引用
收藏
页数:9
相关论文
共 42 条
[1]   A polymer electrolyte-based rechargeable lithium/oxygen battery [J].
Abraham, KM ;
Jiang, Z .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (01) :1-5
[2]   High-Capacity Lithium-Air Cathodes [J].
Beattie, S. D. ;
Manolescu, D. M. ;
Blair, S. L. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (01) :A44-A47
[3]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
[4]   The Identification of Stable Solvents for Nonaqueous Rechargeable Li-Air Batteries [J].
Bryantsev, Vyacheslav S. ;
Uddin, Jasim ;
Giordani, Vincent ;
Walker, Wesley ;
Addison, Dan ;
Chase, Gregory V. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (01) :A160-A171
[5]   Three-dimensional MnO2 ultrathin nanosheet aerogels for high-performance Li-O2 batteries [J].
Chen, Sheng ;
Liu, Guoxue ;
Yadegari, Hossein ;
Wang, Haihui ;
Qiao, Shi Zhang .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (06) :2559-2563
[6]   Improving performance of rechargeable Li-air batteries from using Li-Nafion® binder [J].
Cheng, H. ;
Scott, K. .
ELECTROCHIMICA ACTA, 2014, 116 :51-58
[7]   Compatibility of lithium salts with solvent of the non-aqueous electrolyte in Li-O2 batteries [J].
Du, Peng ;
Lu, Jun ;
Lau, Kah Chun ;
Luo, Xiangyi ;
Bareno, Javier ;
Zhang, Xiaoyi ;
Ren, Yang ;
Zhang, Zhengcheng ;
Curtiss, Larry A. ;
Sun, Yang-Kook ;
Amine, Khalil .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (15) :5572-5581
[8]   Electrical Energy Storage for the Grid: A Battery of Choices [J].
Dunn, Bruce ;
Kamath, Haresh ;
Tarascon, Jean-Marie .
SCIENCE, 2011, 334 (6058) :928-935
[9]   Influence of Li2O2 morphology on oxygen reduction and evolution kinetics in Li-O2 batteries [J].
Gallant, Betar M. ;
Kwabi, David G. ;
Mitchell, Robert R. ;
Zhou, Jigang ;
Thompson, Carl V. ;
Shao-Horn, Yang .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (08) :2518-2528
[10]   Lithium - Air Battery: Promise and Challenges [J].
Girishkumar, G. ;
McCloskey, B. ;
Luntz, A. C. ;
Swanson, S. ;
Wilcke, W. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2010, 1 (14) :2193-2203