Aluminium pre-intercalated orthorhombic V2O5 as high-performance cathode material for aqueous zinc-ion batteries

被引:89
|
作者
Pang, Qiang [1 ,2 ]
He, Wei [1 ]
Yu, Xiangyu [1 ]
Yang, Siyu [1 ]
Zhao, Hainan [2 ]
Fu, Yao [1 ]
Xing, Mingming [1 ]
Tian, Ying [1 ]
Luo, Xixian [1 ]
Wei, Yingjin [2 ]
机构
[1] Dalian Maritime Univ, Sch Sci, Dalian 116026, Peoples R China
[2] Jilin Univ, Coll Phys, Key Lab Phys & Technol Adv Batteries, Minist Educ, Changchun 130012, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Cathode materials; Electrochemical performance; Pre-intercalation of Al3+; V2O5; Zinc-ion batteries; ELECTROCHEMICAL PERFORMANCE; NANOFIBERS;
D O I
10.1016/j.apsusc.2020.148043
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Rechargeable aqueous zinc-ion batteries (AZIBs) are emerging as promising candidates for large-scale energy storage systems because of their low cost and high safety. However, the slow migration rate and strong electrostatic repulsion of divalent Zn2+ put forward many requirements for the properties of cathode materials. Herein, we present an aluminium pre-intercalated orthorhombic V2O5 (Al0.2V2O5) as a new cathode material AZIBs. The analyses of GITT, ex-situ XRD, TEM and XPS indicate that the Al0.2V2O5 electrode possesses a higher Zn2+ diffusion coefficient than V2O5. And, the pre-intercalated Al3+ can stabilize the crystal structure prevent Zn2+ from being trapped in the lattice. Because of the above advantages, Al0.2V2O5 shows much hanced electrochemical performance including a high capacity of 448.4 mA h g(-1) at 0.1 A g(-1) , excellent capability of 143.9 mA h g(-1) at 10 A g(-1) and impressive long-term cycling stability with a capacity retention 61.4% after 5000 cycles at 5 A g(-1). Furthermore, the Al0.2V2O5/Zn battery can provide a high energy density 327.1 W h kg(-1) at 0.1 A g(-1) and a high power density of 5491.8 W kg(-1) at 10 A g(-1) , which shows great potential in the applications of large-scale energy storage.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Polypyrrole-Doped NH4V3O8 with Oxygen Vacancies as High-Performance Cathode Material for Aqueous Zinc-Ion Batteries
    Cai, Xuanxuan
    Zhang, Yu
    Cheng, Huanhuan
    Liu, Chenfan
    Wang, Zhiwen
    Ye, Hang
    Pan, Yanliang
    Jia, Dianzeng
    Lin, He
    SMALL, 2023,
  • [42] The effect of copper doping in α-MnO 2 as cathode material for aqueous Zinc-ion batteries
    Lan, Rong
    Roberts, Alexander
    Gkanas, Evangelos
    Sahib, Ali Jawad Sahib
    Greszta, Agata
    Bhagat, Rohit
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 992
  • [43] Intercalation design of layered vanadium phosphate based cathode material towards high-performance aqueous zinc-ion batteries
    Li, Yan
    Li, Wenxin
    Chen, Hongming
    Liu, Zijin
    Li, Xue
    Zhou, Dan
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2024, 974
  • [44] Layered Birnessite Cathode with a Displacement/Intercalation Mechanism for High-Performance Aqueous Zinc-Ion Batteries
    Zhai, Xian-Zhi
    Qu, Jin
    Hao, Shu-Meng
    Jing, Ya-Qiong
    Chang, Wei
    Wang, Juan
    Li, Wei
    Abdelkrim, Yasmine
    Yuan, Hongfu
    Yu, Zhong-Zhen
    NANO-MICRO LETTERS, 2020, 12 (01)
  • [45] Layered Birnessite Cathode with a Displacement/Intercalation Mechanism for High-Performance Aqueous Zinc-Ion Batteries
    Xian-Zhi Zhai
    Jin Qu
    Shu-Meng Hao
    Ya-Qiong Jing
    Wei Chang
    Juan Wang
    Wei Li
    Yasmine Abdelkrim
    Hongfu Yuan
    Zhong-Zhen Yu
    Nano-Micro Letters, 2020, 12 (04) : 141 - 155
  • [46] Hierarchical Carbon Nanosheet Embedded MnOx Cathode for High-Performance Aqueous Zinc-Ion Batteries
    Zhang, Shimeng
    Wang, Xiaoqi
    Li, Jianbo
    Chen, Yuwei
    Wu, Yu
    Bai, Shengchi
    Jin, Xu
    Jin, Bowen
    Shao, Mingfei
    BATTERIES & SUPERCAPS, 2023, 6 (03)
  • [47] V-MOF@carbon nanotube derived three-dimensional V2O5@carbon nanotube as high-performance cathode for aqueous zinc-ion batteries
    Liu, Mengmei
    Li, Zhihua
    Zhang, Yibo
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2023, 942
  • [48] Layered Birnessite Cathode with a Displacement/Intercalation Mechanism for High-Performance Aqueous Zinc-Ion Batteries
    Xian-Zhi Zhai
    Jin Qu
    Shu-Meng Hao
    Ya-Qiong Jing
    Wei Chang
    Juan Wang
    Wei Li
    Yasmine Abdelkrim
    Hongfu Yuan
    Zhong-Zhen Yu
    Nano-Micro Letters, 2020, 12
  • [49] Synthesis and Electrochemical Performance of the Orthorhombic V2O5•nH2O Nanorods as Cathodes for Aqueous Zinc Batteries
    Tan, Xiaoping
    Guo, Gaoli
    Wang, Kaidi
    Zhang, Huang
    NANOMATERIALS, 2022, 12 (15)
  • [50] Fabrication of a Robust and Porous MnO2 Electrode as the Cathode for High-Performance Aqueous Zinc-Ion Batteries
    Nie, Nantian
    Wang, Fuliang
    Yao, Wenhao
    ENERGY TECHNOLOGY, 2023, 11 (12)