Aluminium pre-intercalated orthorhombic V2O5 as high-performance cathode material for aqueous zinc-ion batteries

被引:89
|
作者
Pang, Qiang [1 ,2 ]
He, Wei [1 ]
Yu, Xiangyu [1 ]
Yang, Siyu [1 ]
Zhao, Hainan [2 ]
Fu, Yao [1 ]
Xing, Mingming [1 ]
Tian, Ying [1 ]
Luo, Xixian [1 ]
Wei, Yingjin [2 ]
机构
[1] Dalian Maritime Univ, Sch Sci, Dalian 116026, Peoples R China
[2] Jilin Univ, Coll Phys, Key Lab Phys & Technol Adv Batteries, Minist Educ, Changchun 130012, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Cathode materials; Electrochemical performance; Pre-intercalation of Al3+; V2O5; Zinc-ion batteries; ELECTROCHEMICAL PERFORMANCE; NANOFIBERS;
D O I
10.1016/j.apsusc.2020.148043
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Rechargeable aqueous zinc-ion batteries (AZIBs) are emerging as promising candidates for large-scale energy storage systems because of their low cost and high safety. However, the slow migration rate and strong electrostatic repulsion of divalent Zn2+ put forward many requirements for the properties of cathode materials. Herein, we present an aluminium pre-intercalated orthorhombic V2O5 (Al0.2V2O5) as a new cathode material AZIBs. The analyses of GITT, ex-situ XRD, TEM and XPS indicate that the Al0.2V2O5 electrode possesses a higher Zn2+ diffusion coefficient than V2O5. And, the pre-intercalated Al3+ can stabilize the crystal structure prevent Zn2+ from being trapped in the lattice. Because of the above advantages, Al0.2V2O5 shows much hanced electrochemical performance including a high capacity of 448.4 mA h g(-1) at 0.1 A g(-1) , excellent capability of 143.9 mA h g(-1) at 10 A g(-1) and impressive long-term cycling stability with a capacity retention 61.4% after 5000 cycles at 5 A g(-1). Furthermore, the Al0.2V2O5/Zn battery can provide a high energy density 327.1 W h kg(-1) at 0.1 A g(-1) and a high power density of 5491.8 W kg(-1) at 10 A g(-1) , which shows great potential in the applications of large-scale energy storage.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Sodium Pre-Intercalated Carbon/V2O5 Constructed by Sustainable Sodium Lignosulfonate for Stable Cathodes in Zinc-Ion Batteries: A Comprehensive Study
    Chen, Junli
    Zhang, Wenli
    Zhang, Xiaojun
    Li, Ziyan
    Ma, Jianhui
    Zhao, Lei
    Jian, Wenbin
    Chen, Suli
    Yin, Jian
    Lin, Xuliang
    Qin, Yanlin
    Qiu, Xueqing
    CHEMSUSCHEM, 2022, 15 (14)
  • [32] Porous cubic MnCo 2 O 4 as a high-performance cathode material for aqueous zinc-ion batteries
    Wu, Yujuan
    Hu, Yingying
    Zhao, Pei
    Zhang, Huihui
    Wang, Ruilin
    Mao, Yiyang
    Wang, Mengbo
    Yang, Ziwen
    Zhang, Xinlei
    Ding, Kun
    Guo, Yong
    Zhang, Qianjun
    Xu, Lianyi
    Wang, Baofeng
    SOLID STATE IONICS, 2024, 411
  • [33] High-performance Cu0.95V2O5 nanoflowers as cathode materials for aqueous zinc-ion batteries
    Xin Yu
    Fang Hu
    Zhi-Qiang Guo
    Lei Liu
    Gui-Hong Song
    Kai Zhu
    Rare Metals, 2022, 41 : 29 - 36
  • [34] High-performance Cu0.95V2O5 nanoflowers as cathode materials for aqueous zinc-ion batteries
    Xin Yu
    Fang Hu
    Zhi-Qiang Guo
    Lei Liu
    Gui-Hong Song
    Kai Zhu
    Rare Metals, 2022, 41 (01) : 29 - 36
  • [35] High-performance Cu0.95V2O5 nanoflowers as cathode materials for aqueous zinc-ion batteries
    Yu, Xin
    Hu, Fang
    Guo, Zhi-Qiang
    Liu, Lei
    Song, Gui-Hong
    Zhu, Kai
    RARE METALS, 2022, 41 (01) : 29 - 36
  • [36] Preparation of Na plus preintercalated V2O5•nH2O nanobelts with abundant oxygen vacancies as a high-performance cathode material for aqueous zinc-ion batteries
    Li, Jiaqi
    Li, Yanwei
    Xu, Wenhan
    Huang, Qize
    Liu, Botian
    Yao, Jinhuan
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 1003
  • [37] V-MOF@graphene derived two-dimensional hierarchical V2O5 @graphene as high-performance cathode for aqueous zinc-ion batteries
    Gong, L.
    Zhang, Y.
    Li, Z.
    MATERIALS TODAY CHEMISTRY, 2022, 23
  • [38] Novel aluminum vanadate as a cathode material for high-performance aqueous zinc-ion batteries
    Liu, Gangyuan
    Xiao, Yao
    Zhang, Wenwei
    Tang, Wen
    Zuo, Chunli
    Zhang, Peiping
    Dong, Shijie
    Luo, Ping
    NANOTECHNOLOGY, 2021, 32 (31)
  • [39] Ultralarge layer spacing and superior structural stability of V2O5 as high-performance cathode for aqueous zinc-ion battery
    Liu, Anni
    Wu, Feng
    Zhang, Yixin
    Jiang, Ying
    Xie, Chen
    Yang, Keqing
    Zhou, Jiahui
    Xie, Man
    NANO RESEARCH, 2023, 16 (07) : 9461 - 9470
  • [40] Ultralarge layer spacing and superior structural stability of V2O5 as high-performance cathode for aqueous zinc-ion battery
    Anni Liu
    Feng Wu
    Yixin Zhang
    Ying Jiang
    Chen Xie
    Keqing Yang
    Jiahui Zhou
    Man Xie
    Nano Research, 2023, 16 : 9461 - 9470