Soliton solutions for fractional Schrodinger equations

被引:17
作者
Li, Quanqing [1 ]
Wu, Xian [2 ]
机构
[1] Yunnan Univ, Dept Math & Stat, Kunming 650091, Yunnan, Peoples R China
[2] Yunnan Normal Univ, Dept Math, Kunming 650092, Yunnan, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractional Schrodinger equation; Soliton solution; Minimization argument;
D O I
10.1016/j.aml.2015.10.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the existence of a soliton type solution for the fractional Schrodinger equation (-Delta)(s) u + V(x)u + [(-Delta)(s)u(2)]u = lambda vertical bar u vertical bar(p-1)u, u > 0, x is an element of R-N, where 0 < s < 1, (-Delta)(s) denotes the fractional Laplacian of order s, N > 2s, 2*(s) = 2N/N - 2s, 1 < p < 2*(s) - 1. We prove that the equation has a solution by using a constrained minimization argument. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:119 / 124
页数:6
相关论文
共 7 条
  • [1] Elliptic problems involving the fractional Laplacian in RN
    Autuori, Giuseppina
    Pucci, Patrizia
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (08) : 2340 - 2362
  • [2] Existence of entire solutions for a class of quasilinear elliptic equations
    Autuori, Giuseppina
    Pucci, Patrizia
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2013, 20 (03): : 977 - 1009
  • [3] Hitchhiker's guide to the fractional Sobolev spaces
    Di Nezza, Eleonora
    Palatucci, Giampiero
    Valdinoci, Enrico
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (05): : 521 - 573
  • [4] A critical Kirchhoff type problem involving a nonlocal operator
    Fiscella, Alessio
    Valdinoci, Enrico
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 94 : 156 - 170
  • [5] Soliton solutions for quasilinear Schrodinger equations, I
    Liu, JQ
    Wang, ZQ
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (02) : 441 - 448
  • [6] Ground states for fractional Schrodinger equations with critical growth
    Shang, Xudong
    Zhang, Jihui
    [J]. NONLINEARITY, 2014, 27 (02) : 187 - 207
  • [7] Zou W., 2006, Critical Point Theory and Its Applications