Quercetin glucosides inhibit glucose uptake into brush-border-membrane vesicles of porcine jejunum

被引:156
|
作者
Cermak, R [1 ]
Landgraf, S [1 ]
Wolffram, S [1 ]
机构
[1] Univ Kiel, Inst Anim Nutr Physiol & Metab, D-24098 Kiel, Germany
关键词
quercetin monoglucosides; intestinal glucose transport; sodium-dependent glucose transporter 1;
D O I
10.1079/BJN20041128
中图分类号
R15 [营养卫生、食品卫生]; TS201 [基础科学];
学科分类号
100403 ;
摘要
Recent experimental data point to an interaction of dietary flavonol monoglucosides with the intestinal Na-dependent glucose transporter I (SGLT1). To investigate this interaction in more detail, we performed experiments with SGLT1-containing brush-border-membrane vesicles (BBMV) from pig jejunum. The flavonol quercetin-3-O-glucoside (Q3G) concentration-dependently inhibited Na-dependent uptake of radioactively labelled D-glucos, into BBMV. Uptake Of L-leucine was not inhibited by Q3G, indicating a specific interaction of the glucoside with SGLT1. Whereas the maximal transport rate of concentration-dependent initial glucose uptake was not altered in the presence of Q3G, the constant for half-maximal glucose uptake was increased, suggesting a competitive type of inhibition of glucose uptake by Q3G. Trans-stimulation experiments suggested the transport of Q3G via SGLT1. In addition, Q3G decreased the Na-independent diffusive uptake of glucose into BBMV. Other flavonoids were also tested for their inhibitory effect on D-glucose uptake. Among the tested quercetin glycosides, only the 4'-O-glucoside (Q4G) also inhibited Na-dependent glucose uptake into BBMV, whereas the 3-O-galactoside, the 3-O-glucorhamnoside and the aglycone quercetin itself were ineffective. Glucosides of some other flavonoid classes such as naringenin-7-O-glucoside, genistein-7-O-glucoside and cyanidin-3,5-O-diglucoside were ineffective as well. Thus, dietary quercetin monoglucosides, for example, Q3G and Q4G, have an impact on intestinal nutrient transporters such as SGLT1 and related systems.
引用
收藏
页码:849 / 855
页数:7
相关论文
共 50 条