Spatio-temporal Aggregation for Visual Analysis of Movements

被引:140
|
作者
Andrienko, Gennady [1 ]
Andrienko, Natalia [1 ]
机构
[1] Fraunhofer Inst IAIS, St Augustin, Germany
来源
IEEE SYMPOSIUM ON VISUAL ANALYTICS SCIENCE AND TECHNOLOGY 2008, PROCEEDINGS | 2008年
关键词
Movement data; spatio-temporal data; aggregation; scalable visualization; geovisualization;
D O I
10.1109/VAST.2008.4677356
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Data about movements of various objects are collected in growing amounts by means of current tracking technologies. Traditional approaches to visualization and interactive exploration of movement data cannot cope with data of such sizes, In this research paper we investigate the ways of using aggregation for visual analysis of movement data. We define aggregation methods suitable for movement data and find visualization and interaction techniques to represent results of aggregations and enable comprehensive exploration of the data. We consider two possible views of movement, traffic-oriented and trajectory-oriented. Each view requires different methods of analysis and of data aggregation. We illustrate our argument with example data resulting from tracking multiple cars in Milan and example analysis tasks from the domain of city traffic management.
引用
收藏
页码:51 / 58
页数:8
相关论文
共 50 条
  • [1] Historical spatio-temporal aggregation
    Tao, Y
    Papadias, D
    ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2005, 23 (01) : 61 - 102
  • [2] A visual analytics framework for spatio-temporal analysis and modelling
    Andrienko, Natalia
    Andrienko, Gennady
    DATA MINING AND KNOWLEDGE DISCOVERY, 2013, 27 (01) : 55 - 83
  • [3] A visual analytics framework for spatio-temporal analysis and modelling
    Natalia Andrienko
    Gennady Andrienko
    Data Mining and Knowledge Discovery, 2013, 27 : 55 - 83
  • [4] Visual Exploration of Big Spatio-Temporal Movement Data
    Xu, Jie
    Wang, Wuquan
    Li, Jie
    Zhang, Kang
    PROCEEDINGS OF 2015 IEEE INTERNATIONAL CONFERENCE ON PROGRESS IN INFORMATCS AND COMPUTING (IEEE PIC), 2015, : 363 - 368
  • [5] A spatio-temporal aquarium for visual exploration on geographic phenomena
    Li, CY
    Ma, XJ
    Xie, KQ
    Sun, YX
    Cuo, C
    Wen, P
    IGARSS 2005: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-8, PROCEEDINGS, 2005, : 3641 - 3644
  • [6] DSTVis: toward better interactive visual analysis of Drones' spatio-temporal data
    Chen, Fengxin
    Yu, Ye
    Ni, Liangliang
    Zhang, Zhenya
    Lu, Qiang
    JOURNAL OF VISUALIZATION, 2024, 27 (04) : 623 - 638
  • [7] Spatio-Temporal Analysis of Team Sports
    Gudmundsson, Joachim
    Horton, Michael
    ACM COMPUTING SURVEYS, 2017, 50 (02)
  • [8] Spatio-temporal principal component analysis
    Krzysko, Miroslaw
    Nijkamp, Peter
    Ratajczak, Waldemar
    Wolynski, Waldemar
    Wenerska, Beata
    SPATIAL ECONOMIC ANALYSIS, 2023,
  • [9] Spatio-temporal principal component analysis
    Krzysko, Miroslaw
    Nijkamp, Peter
    Ratajczak, Waldemar
    Wolynski, Waldemar
    Wenerska, Beata
    SPATIAL ECONOMIC ANALYSIS, 2024, 19 (01) : 8 - 29
  • [10] Influence of aggregation on benthic coral reef spatio-temporal dynamics
    Brito-Millan, Marlene
    Werner, B. T.
    Sandin, Stuart A.
    McNamara, Dylan E.
    ROYAL SOCIETY OPEN SCIENCE, 2019, 6 (02):