Ecological processes dominate the 13C land disequilibrium in a Rocky Mountain subalpine forest

被引:26
作者
Bowling, D. R. [1 ]
Ballantyne, A. P. [2 ]
Miller, J. B. [3 ,4 ]
Burns, S. P. [5 ,6 ]
Conway, T. J. [3 ]
Menzer, O. [7 ]
Stephens, B. B. [6 ]
Vaughn, B. H. [8 ]
机构
[1] Univ Utah, Dept Biol, Salt Lake City, UT 84112 USA
[2] Univ Montana, Dept Ecosyst Conservat Sci, Missoula, MT 59812 USA
[3] NOAA, Earth Syst Res Lab, Boulder, CO USA
[4] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA
[5] Univ Colorado, Dept Geog, Boulder, CO 80309 USA
[6] Natl Ctr Atmospher Res, Boulder, CO 80307 USA
[7] Univ Calif Santa Barbara, Dept Geog, Santa Barbara, CA 93106 USA
[8] Univ Colorado, Inst Arctic & Alpine Res, Boulder, CO 80309 USA
基金
美国国家科学基金会;
关键词
carbon cycling; biosphere; atmosphere interactions; carbon isotope discrimination; biogeochemical cycles; forest ecology; conifer; CARBON-ISOTOPE DISCRIMINATION; WATER-USE EFFICIENCY; NET ECOSYSTEM EXCHANGE; ATMOSPHERIC CO2; HIGH-ELEVATION; RESPIRED CO2; INTERANNUAL VARIABILITY; PHOTOSYNTHETIC CAPACITY; GLOBAL DISTRIBUTION; DARK RESPIRATION;
D O I
10.1002/2013GB004686
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Fossil fuel combustion has increased atmospheric CO2 by approximate to 115 mu mol mol(-1) since 1750 and decreased its carbon isotope composition (delta C-13) by 1.7-2 (the C-13 Suess effect). Because carbon is stored in the terrestrial biosphere for decades and longer, the delta C-13 of CO2 released by terrestrial ecosystems is expected to differ from the C-13 of CO2 assimilated by land plants during photosynthesis. This isotopic difference between land-atmosphere respiration (delta(R)) and photosynthetic assimilation (delta(A)) fluxes gives rise to the C-13 land disequilibrium (D). Contemporary understanding suggests that over annual and longer time scales, D is determined primarily by the Suess effect, and thus, D is generally positive (delta(R)>delta(A)). A 7 year record of biosphere-atmosphere carbon exchange was used to evaluate the seasonality of delta(A) and delta(R), and the C-13 land disequilibrium, in a subalpine conifer forest. A novel isotopic mixing model was employed to determine the delta C-13 of net land-atmosphere exchange during day and night and combined with tower-based flux observations to assess delta(A) and delta(R). The disequilibrium varied seasonally and when flux-weighted was opposite in sign than expected from the Suess effect (D= -0.75 +/- 0.21 parts per thousand or -0.880.10 parts per thousand depending on method). Seasonality in D appeared to be driven by photosynthetic discrimination (Delta(canopy)) responding to environmental factors. Possible explanations for negative D include (1) changes in Delta(canopy) over decades as CO2 and temperature have risen, and/or (2) post-photosynthetic fractionation processes leading to sequestration of isotopically enriched carbon in long-lived pools like wood and soil.
引用
收藏
页码:352 / 370
页数:19
相关论文
共 135 条
[41]   A 1000-year high precision record of δ13C in atmospheric CO2 [J].
Francey, RJ ;
Allison, CE ;
Etheridge, DM ;
Trudinger, CM ;
Enting, IG ;
Leuenberger, M ;
Langenfelds, RL ;
Michel, E ;
Steele, LP .
TELLUS SERIES B-CHEMICAL AND PHYSICAL METEOROLOGY, 1999, 51 (02) :170-193
[42]   Controls on Soil Organic Carbon Stocks and Turnover Among North American Ecosystems [J].
Frank, Douglas A. ;
Pontes, Alyssa W. ;
McFarlane, Karis J. .
ECOSYSTEMS, 2012, 15 (04) :604-615
[43]   Sensitivity of plants to changing atmospheric CO2 concentration: from the geological past to the next century [J].
Franks, Peter J. ;
Adams, Mark A. ;
Amthor, Jeffrey S. ;
Barbour, Margaret M. ;
Berry, Joseph A. ;
Ellsworth, David S. ;
Farquhar, Graham D. ;
Ghannoum, Oula ;
Lloyd, Jon ;
McDowell, Nate ;
Norby, Richard J. ;
Tissue, David T. ;
von Caemmerer, Susanne .
NEW PHYTOLOGIST, 2013, 197 (04) :1077-1094
[44]   Climate-carbon cycle feedback analysis:: Results from the C4MIP model intercomparison [J].
Friedlingstein, P. ;
Cox, P. ;
Betts, R. ;
Bopp, L. ;
Von Bloh, W. ;
Brovkin, V. ;
Cadule, P. ;
Doney, S. ;
Eby, M. ;
Fung, I. ;
Bala, G. ;
John, J. ;
Jones, C. ;
Joos, F. ;
Kato, T. ;
Kawamiya, M. ;
Knorr, W. ;
Lindsay, K. ;
Matthews, H. D. ;
Raddatz, T. ;
Rayner, P. ;
Reick, C. ;
Roeckner, E. ;
Schnitzler, K. -G. ;
Schnur, R. ;
Strassmann, K. ;
Weaver, A. J. ;
Yoshikawa, C. ;
Zeng, N. .
JOURNAL OF CLIMATE, 2006, 19 (14) :3337-3353
[45]   Carbon 13 exchanges between the atmosphere and biosphere [J].
Fung, I ;
Field, CB ;
Berry, JA ;
Thompson, MV ;
Randerson, JT ;
Malmstrom, CM ;
Vitousek, PM ;
Collatz, GJ ;
Sellers, PJ ;
Randall, DA ;
Denning, AS ;
Badeck, F ;
John, J .
GLOBAL BIOGEOCHEMICAL CYCLES, 1997, 11 (04) :507-533
[46]   Soil carbon cycling in a temperate forest: radiocarbon-based estimates of residence times, sequestration rates and partitioning of fluxes [J].
Gaudinski, JB ;
Trumbore, SE ;
Davidson, EA ;
Zheng, SH .
BIOGEOCHEMISTRY, 2000, 51 (01) :33-69
[47]   Opposite carbon isotope discrimination during dark respiration in leaves versus roots - a review [J].
Ghashghaie, Jaleh ;
Badeck, Franz W. .
NEW PHYTOLOGIST, 2014, 201 (03) :751-769
[48]   THE CLIMATE OF NIWOT RIDGE, FRONT RANGE, COLORADO, USA [J].
GREENLAND, D .
ARCTIC AND ALPINE RESEARCH, 1989, 21 (04) :380-391
[49]   Direct measurement of biosphere-atmosphere isotopic CO2 exchange using the eddy covariance technique [J].
Griffis, T. J. ;
Sargent, S. D. ;
Baker, J. M. ;
Lee, X. ;
Tanner, B. D. ;
Greene, J. ;
Swiatek, E. ;
Billmark, K. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2008, 113 (D8)
[50]   Pan-European δ13C values of air and organic matter from forest ecosystems [J].
Hemming, D ;
Yakir, D ;
Ambus, P ;
Aurela, M ;
Besson, C ;
Black, K ;
Buchmann, N ;
Burlett, R ;
Cescatti, A ;
Clement, R ;
Gross, P ;
Granier, A ;
Grünwald, T ;
Havrankova, K ;
Janous, D ;
Janssens, IA ;
Knohl, A ;
Östner, BK ;
Kowalski, A ;
Laurila, T ;
Mata, C ;
Marcolla, B ;
Matteucci, G ;
Moncrieff, J ;
Moors, EJ ;
Osborne, B ;
Pereira, JS ;
Pihlatie, M ;
Pilegaard, K ;
Ponti, F ;
Rosova, Z ;
Rossi, F ;
Scartazza, A ;
Vesala, T .
GLOBAL CHANGE BIOLOGY, 2005, 11 (07) :1065-1093