A BERNSTEIN-VON MISES THEOREM FOR DOUBLY CENSORED DATA

被引:0
|
作者
Kim, Yongdai [1 ]
机构
[1] Seoul Natl Univ, Dept Stat, Seoul, South Korea
关键词
Bernstein-von Mises theorem; doubly censored data; survival model; SELF-CONSISTENT; NONPARAMETRIC-ESTIMATION; BAYESIAN-ANALYSIS; SURVIVAL FUNCTION; LARGE-SAMPLE; ESTIMATORS; MODELS;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove a Bernstein-von Mises theorem for the survival function based on doubly censored data. In particular, we develop a new technique for proving Bernstein-von Mises theorems for nonparametric problems. We consider two Bayesian approaches for doubly censored data: the direct approach, where we obtain the posterior of the distribution of the survival times by putting the Dirichlet process prior on the distribution of the survival times; an indirect approach, where we first obtain the posterior of the distribution of the observables with the Dirichlet process and from which we get the posterior of the distribution of the survival times. We show that the two posterior distributions from these two approaches are the same. Using this fact, we prove a Bernstein-von Mises theorem.
引用
收藏
页码:581 / 595
页数:15
相关论文
共 50 条
  • [1] THE SEMIPARAMETRIC BERNSTEIN-VON MISES THEOREM
    Bickel, P. J.
    Kleijn, B. J. K.
    ANNALS OF STATISTICS, 2012, 40 (01): : 206 - 237
  • [2] On the Bernstein-von Mises theorem for the Dirichlet process
    Ray, Kolyan
    van der Vaart, Aad
    ELECTRONIC JOURNAL OF STATISTICS, 2021, 15 (01): : 2224 - 2246
  • [3] BERNSTEIN-VON MISES THEOREM FOR MARKOV PROCESSES
    BORWANKER, J
    KALLIANP.G
    RAO, BLSP
    ANNALS OF MATHEMATICAL STATISTICS, 1971, 42 (04): : 1241 - +
  • [4] THE BERNSTEIN-VON MISES THEOREM AND NONREGULAR MODELS
    Bochkina, Natalia A.
    Green, Peter J.
    ANNALS OF STATISTICS, 2014, 42 (05): : 1850 - 1878
  • [5] BERNSTEIN-VON MISES THEOREM FOR LINEAR FUNCTIONALS OF THE DENSITY
    Rivoirard, Vincent
    Rousseau, Judith
    ANNALS OF STATISTICS, 2012, 40 (03): : 1489 - 1523
  • [6] A Bernstein-Von Mises Theorem for discrete probability distributions
    Boucheron, S.
    Gassiat, E.
    ELECTRONIC JOURNAL OF STATISTICS, 2009, 3 : 114 - 148
  • [7] Critical dimension in the semiparametric Bernstein-von Mises theorem
    Panov, Maxim E.
    Spokoiny, Vladimir G.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2014, 287 (01) : 232 - 255
  • [8] The Bernstein-von Mises theorem for the proportional hazard model
    Kim, Yongdai
    ANNALS OF STATISTICS, 2006, 34 (04): : 1678 - 1700
  • [9] The Bernstein-von Mises theorem for regression based on Gaussian Processes
    Burnaev, E. V.
    Zaytsev, A. A.
    Spokoiny, V. G.
    RUSSIAN MATHEMATICAL SURVEYS, 2013, 68 (05) : 954 - 956
  • [10] A BERNSTEIN-VON MISES THEOREM FOR SMOOTH FUNCTIONALS IN SEMIPARAMETRIC MODELS
    Castillo, Ismael
    Rousseau, Judith
    ANNALS OF STATISTICS, 2015, 43 (06): : 2353 - 2383