FLASH MHD simulations of experiments that study shock-generated magnetic fields

被引:76
作者
Tzeferacos, P. [1 ,2 ]
Fatenejad, M. [1 ,2 ]
Flocke, N. [1 ]
Graziani, C. [1 ]
Gregori, G. [1 ,2 ]
Lamb, D. Q. [1 ]
Lee, D. [3 ]
Meinecke, J. [2 ]
Scopatz, A. [4 ]
Weide, K. [1 ]
机构
[1] Univ Chicago, Dept Astron & Astrophys, Flash Ctr Computat Sci, Chicago, IL 60637 USA
[2] Univ Oxford, Dept Phys, Oxford OX1 3PU, England
[3] Univ Calif Santa Cruz, Dept Appl Math & Stat, Santa Cruz, CA 95064 USA
[4] Univ Wisconsin, Dept Engn Phys, Madison, WI 53706 USA
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
Magnetohydrodynamics; High energy density laboratory astrophysics; Numerical methods; STAGGERED MESH SCHEME; AMPLIFICATION; CODE;
D O I
10.1016/j.hedp.2014.11.003
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We summarize recent additions and improvements to the high energy density physics capabilities in FLASH, highlighting new non-ideal magneto-hydrodynamic (MHD) capabilities. We then describe 3D Cartesian and 2D cylindrical FLASH MHD simulations that have helped to design and analyze experiments conducted at the Vulcan laser facility. In these experiments, a laser illuminates a carbon rod target placed in a gas-filled chamber. A magnetic field diagnostic (called a Bdot) employing three very small induction coils is used to measure all three components of the magnetic field at a chosen point in space. The simulations have revealed that many fascinating physical processes occur in the experiments. These include megagauss magnetic fields generated by the interaction of the laser with the target via the Biermann battery mechanism, which are advected outward by the vaporized target material but decrease in strength due to expansion and resistivity; magnetic fields generated by an outward expanding shock via the Biermann battery mechanism; and a breakout shock that overtakes the first wave, the contact discontinuity between the target material and the gas, and then the initial expanding shock. Finally, we discuss the validation and predictive science we have done for this experiment with FLASH. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:24 / 31
页数:8
相关论文
共 34 条
[1]   THE DECELERATION POWERING OF SYNCHROTRON EMISSION FROM EJECTA COMPONENTS IN SUPERNOVA REMNANT CASSIOPEIA-A [J].
ANDERSON, MC ;
RUDNICK, L .
ASTROPHYSICAL JOURNAL, 1995, 441 (01) :307-&
[2]  
[Anonymous], PHYS FULLY IONIZED G
[3]  
Atzeni S., 2004, PHYS INERTIAL FUSION
[4]  
BIERMANN L, 1950, Z NATURFORSCH A, V5, P65
[5]  
Braginskii S. I., 1965, Reviews of Plasma Physics
[6]   The Richtmyer-Meshkov instability [J].
Brouillette, M .
ANNUAL REVIEW OF FLUID MECHANICS, 2002, 34 :445-468
[7]   THERMAL CONDUCTION IN LASER FUSION [J].
BRYSK, H ;
CAMPBELL, PM ;
HAMMERLING, P .
PLASMA PHYSICS AND CONTROLLED FUSION, 1975, 17 (06) :473-484
[8]   Cassiopeia A and its clumpy presupernova wind [J].
Chevalier, RA ;
Oishi, J .
ASTROPHYSICAL JOURNAL, 2003, 593 (01) :L23-L26
[9]   Extensible component-based architecture for FLASH, a massively parallel, multiphysics simulation code [J].
Dubey, Anshu ;
Antypas, Katie ;
Ganapathy, Murali K. ;
Reid, Lynn B. ;
Riley, Katherine ;
Sheeler, Dan ;
Siegel, Andrew ;
Weide, Klaus .
PARALLEL COMPUTING, 2009, 35 (10-11) :512-522
[10]   Design, construction, and calibration of a three-axis, high-frequency magnetic probe (B-dot probe) as a diagnostic for exploding plasmas [J].
Everson, E. T. ;
Pribyl, P. ;
Constantin, C. G. ;
Zylstra, A. ;
Schaeffer, D. ;
Kugland, N. L. ;
Niemann, C. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2009, 80 (11)