EEG-Based Emotion Recognition Using Spatial-Temporal Graph Convolutional LSTM With Attention Mechanism

被引:71
作者
Feng, Lin [1 ]
Cheng, Cheng [1 ]
Zhao, Mingyan [1 ]
Deng, Huiyuan [1 ]
Zhang, Yong [2 ,3 ]
机构
[1] Dalian Univ Technol, Dept Comp Sci & Technol, Dalian 116024, Peoples R China
[2] Huzhou Univ, Sch Informat Engn, Huzhou 313000, Peoples R China
[3] Liaoning Normal Univ, Sch Comp & Informat Technol, Dalian 116081, Peoples R China
基金
中国国家自然科学基金;
关键词
Electroencephalography; Emotion recognition; Feature extraction; Brain modeling; Bidirectional control; Data mining; Convolutional neural networks; Attention-enhanced bi-directional long short-term memory; biological topology; electroencephalogram; emotion recognition; spatial-graph convolutional network; BIDIRECTIONAL LSTM; NETWORKS;
D O I
10.1109/JBHI.2022.3198688
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The dynamic uncertain relationship among each brain region is a necessary factor that limits EEG-based emotion recognition. It is a thought-provoking problem to availably employ time-varying spatial and temporal characteristics from multi-channel electroencephalogram (EEG) signals. Although deep learning has made remarkable achievements in emotion recognition, the biological topological information among brain regions does not fully exploit, which is vital for EEG-based emotion recognition. In response to this problem, we design a hybrid model called ST-GCLSTM, which comprises a spatial-graph convolutional network (SGCN) module and an attention-enhanced bi-directional Long Short-Term Memory (LSTM) module. The main advantage of ST-GCLSTM is that it can consider the biological topology information of each brain region to extract representative spatial-temporal features from multiple EEG channels. Specifically, we construct two layers SGCN by introducing adjacency matrices to adaptively learn the intrinsic connection among different EEG channels. Moreover, an attention-enhanced mechanism is placed into a bi-directional LSTM module to extract the crucial spatial-temporal features from sequential EEG data, and then these features serve as the input layer of the classifier to learn discriminative emotion-related features. Extensive experiments on the DEAP, SEED, and SEED-IV datasets demonstrate the effectiveness of the proposed ST-GCLSTM model, revealing that our model had an absolute performance improvement over state-of-the-art strategies.
引用
收藏
页码:5406 / 5417
页数:12
相关论文
共 50 条
  • [41] Graph-Embedded Convolutional Neural Network for Image-Based EEG Emotion Recognition
    Song, Tengfei
    Zheng, Wenming
    Liu, Suyuan
    Zong, Yuan
    Cui, Zhen
    Li, Yang
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, 2022, 10 (03) : 1399 - 1413
  • [42] Automatically Extracting and Utilizing EEG Channel Importance Based on Graph Convolutional Network for Emotion Recognition
    Yang, Kun
    Yao, Zhenning
    Zhang, Keze
    Xu, Jing
    Zhu, Li
    Cheng, Shichao
    Zhang, Jianhai
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2024, 28 (08) : 4588 - 4598
  • [43] Deep Learning Model With Adaptive Regularization for EEG-Based Emotion Recognition Using Temporal and Frequency Features
    Samavat, Alireza
    Khalili, Ebrahim
    Ayati, Bentolhoda
    Ayati, Marzieh
    IEEE ACCESS, 2022, 10 : 24520 - 24527
  • [44] Emotion recognition with convolutional neural network and EEG-based EFDMs
    Wang, Fei
    Wu, Shichao
    Zhang, Weiwei
    Xu, Zongfeng
    Zhang, Yahui
    Wu, Chengdong
    Coleman, Sonya
    NEUROPSYCHOLOGIA, 2020, 146
  • [45] SSTD: A Novel Spatio-Temporal Demographic Network for EEG-Based Emotion Recognition
    Li, Rui
    Ren, Chao
    Li, Chen
    Zhao, Nan
    Lu, Dawei
    Zhang, Xiaowei
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2023, 10 (01) : 376 - 387
  • [46] EEG emotion recognition using fusion model of graph convolutional neural networks and LSTM
    Yin, Yongqiang
    Zheng, Xiangwei
    Hu, Bin
    Zhang, Yuang
    Cui, Xinchun
    APPLIED SOFT COMPUTING, 2021, 100
  • [47] Multimodal EEG Emotion Recognition Based on the Attention Recurrent Graph Convolutional Network
    Chen, Jingxia
    Liu, Yang
    Xue, Wen
    Hu, Kailei
    Lin, Wentao
    INFORMATION, 2022, 13 (11)
  • [48] Ground Truth Dataset for EEG-Based Emotion Recognition With Visual Indication
    Yang, Guosheng
    Jiao, Rui
    Jiang, Huiping
    Zhang, Ting
    IEEE ACCESS, 2020, 8 (08): : 188503 - 188514
  • [49] Skeleton-Based Emotion Recognition Based on Two-Stream Self-Attention Enhanced Spatial-Temporal Graph Convolutional Network
    Shi, Jiaqi
    Liu, Chaoran
    Ishi, Carlos Toshinori
    Ishiguro, Hiroshi
    SENSORS, 2021, 21 (01) : 1 - 16
  • [50] EEG-Based Emotion Recognition using 3D Convolutional Neural Networks
    Salama, Elham S.
    El-Khoribi, Reda A.
    Shoman, Mahmoud E.
    Shalaby, Mohamed A. Wahby
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2018, 9 (08) : 329 - 337