EEG-Based Emotion Recognition Using Spatial-Temporal Graph Convolutional LSTM With Attention Mechanism

被引:69
作者
Feng, Lin [1 ]
Cheng, Cheng [1 ]
Zhao, Mingyan [1 ]
Deng, Huiyuan [1 ]
Zhang, Yong [2 ,3 ]
机构
[1] Dalian Univ Technol, Dept Comp Sci & Technol, Dalian 116024, Peoples R China
[2] Huzhou Univ, Sch Informat Engn, Huzhou 313000, Peoples R China
[3] Liaoning Normal Univ, Sch Comp & Informat Technol, Dalian 116081, Peoples R China
基金
中国国家自然科学基金;
关键词
Electroencephalography; Emotion recognition; Feature extraction; Brain modeling; Bidirectional control; Data mining; Convolutional neural networks; Attention-enhanced bi-directional long short-term memory; biological topology; electroencephalogram; emotion recognition; spatial-graph convolutional network; BIDIRECTIONAL LSTM; NETWORKS;
D O I
10.1109/JBHI.2022.3198688
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The dynamic uncertain relationship among each brain region is a necessary factor that limits EEG-based emotion recognition. It is a thought-provoking problem to availably employ time-varying spatial and temporal characteristics from multi-channel electroencephalogram (EEG) signals. Although deep learning has made remarkable achievements in emotion recognition, the biological topological information among brain regions does not fully exploit, which is vital for EEG-based emotion recognition. In response to this problem, we design a hybrid model called ST-GCLSTM, which comprises a spatial-graph convolutional network (SGCN) module and an attention-enhanced bi-directional Long Short-Term Memory (LSTM) module. The main advantage of ST-GCLSTM is that it can consider the biological topology information of each brain region to extract representative spatial-temporal features from multiple EEG channels. Specifically, we construct two layers SGCN by introducing adjacency matrices to adaptively learn the intrinsic connection among different EEG channels. Moreover, an attention-enhanced mechanism is placed into a bi-directional LSTM module to extract the crucial spatial-temporal features from sequential EEG data, and then these features serve as the input layer of the classifier to learn discriminative emotion-related features. Extensive experiments on the DEAP, SEED, and SEED-IV datasets demonstrate the effectiveness of the proposed ST-GCLSTM model, revealing that our model had an absolute performance improvement over state-of-the-art strategies.
引用
收藏
页码:5406 / 5417
页数:12
相关论文
共 50 条
  • [31] A Channel-Fused Dense Convolutional Network for EEG-Based Emotion Recognition
    Gao, Zhongke
    Wang, Xinmin
    Yang, Yuxuan
    Li, Yanli
    Ma, Kai
    Chen, Guanrong
    IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2021, 13 (04) : 945 - 954
  • [32] EEG-based emotion recognition using random Convolutional Neural Networks
    Cheng, Wen Xin
    Gao, Ruobin
    Suganthan, P. N.
    Yuen, Kum Fai
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2022, 116
  • [33] ASTDF-Net: Attention-Based Spatial-Temporal Dual-Stream Fusion Network for EEG-Based Emotion Recognition
    Gong, Peiliang
    Jia, Ziyu
    Wang, Pengpai
    Zhou, Yueying
    Zhang, Daoqiang
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 883 - 892
  • [34] EEG-Based Auditory Attention Detection With Spiking Graph Convolutional Network
    Cai, Siqi
    Zhang, Ran
    Zhang, Malu
    Wu, Jibin
    Li, Haizhou
    IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2024, 16 (05) : 1698 - 1706
  • [35] Multiscale Temporal Self-Attention and Dynamical Graph Convolution Hybrid Network for EEG-Based Stereogram Recognition
    Shen, Lili
    Sun, Mingyang
    Li, Qunxia
    Li, Beichen
    Pan, Zhaoqing
    Lei, Jianjun
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2022, 30 : 1191 - 1202
  • [36] EEG-Based Emotion Recognition via Efficient Convolutional Neural Network and Contrastive Learning
    Li, Chang
    Lin, Xuejuan
    Liu, Yu
    Song, Rencheng
    Cheng, Juan
    Chen, Xun
    IEEE SENSORS JOURNAL, 2022, 22 (20) : 19608 - 19619
  • [37] Transformers for EEG-Based Emotion Recognition: A Hierarchical Spatial Information Learning Model
    Wang, Zhe
    Wang, Yongxiong
    Hu, Chuanfei
    Yin, Zhong
    Song, Yu
    IEEE SENSORS JOURNAL, 2022, 22 (05) : 4359 - 4368
  • [38] EEG-Based Emotion Recognition Using Trainable Adjacency Relation Driven Graph Convolutional Network
    Li, Wei
    Wang, Mingming
    Zhu, Junyi
    Song, Aiguo
    IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2023, 15 (04) : 1656 - 1672
  • [39] Unsupervised Learning in Reservoir Computing for EEG-Based Emotion Recognition
    Fourati, Rahma
    Ammar, Boudour
    Sanchez-Medina, Javier
    Alimi, Adel M.
    IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2022, 13 (02) : 972 - 984
  • [40] Graph-Embedded Convolutional Neural Network for Image-Based EEG Emotion Recognition
    Song, Tengfei
    Zheng, Wenming
    Liu, Suyuan
    Zong, Yuan
    Cui, Zhen
    Li, Yang
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, 2022, 10 (03) : 1399 - 1413