Axisymmetric solutions to fractional diffusion-wave equation in a cylinder under Robin boundary condition

被引:14
作者
Povstenko, Y. [1 ]
机构
[1] Jan Dlugosz Univ Czestochowa, Inst Math & Comp Sci, PL-42200 Czestochowa, Poland
关键词
RADIAL DIFFUSION; HEAT-CONDUCTION;
D O I
10.1140/epjst/e2013-01962-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The axisymmetric time-fractional diffusion-wave equation with the Caputo derivative of the order 0 < alpha a parts per thousand currency sign 2 is considered in a cylinder under the prescribed linear combination of the values of the sought function and the values of its normal derivative at the boundary. The fundamental solutions to the Cauchy, source, and boundary problems are investigated. The Laplace transform with respect to time and finite Hankel transform with respect to the radial coordinate are used. The solutions are obtained in terms of Mittag-Leffler functions. The numerical results are illustrated graphically.
引用
收藏
页码:1767 / 1777
页数:11
相关论文
共 36 条
[1]   Fractional radial diffusion in a cylinder [J].
Achar, BNN ;
Hanneken, JW .
JOURNAL OF MOLECULAR LIQUIDS, 2004, 114 (1-3) :147-151
[2]  
[Anonymous], 2006, THEORY APPL FRACTION
[3]  
[Anonymous], P 13 INT CARP CONTR
[4]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[5]   Locally One-Dimensional Scheme for Fractional Diffusion Equations with Robin Boundary Conditions [J].
Bazzaev, A. K. ;
Shkhanukov-Lafishev, M. Kh .
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2010, 50 (07) :1141-1149
[6]   Fractional standard map: Riemann-Liouville vs. Caputo [J].
Edelman, M. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (12) :4573-4580
[7]  
FUJITA Y, 1990, OSAKA J MATH, V27, P309
[8]   Mathematical modeling of time fractional reaction-diffusion systems [J].
Gafiychuk, V. ;
Datsko, B. ;
Meleshko, V. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 220 (1-2) :215-225
[9]   Analysis of the solutions of coupled nonlinear fractional reaction-diffusion equations [J].
Gafiychuk, V. ;
Datsko, B. ;
Meleshko, V. ;
Blackmore, D. .
CHAOS SOLITONS & FRACTALS, 2009, 41 (03) :1095-1104
[10]  
Galitsyn A.S., 1976, Integral Transforms and Special Functions in Heat Conduction Problems