Stabilizing fixed points of time-delay systems close to the Hopf bifurcation using a dynamic delayed feedback control method

被引:16
作者
Rezaie, B. [1 ]
Motlagh, M. R. Jahed [1 ]
Analoui, M. [1 ]
Khorsandi, S. [2 ]
机构
[1] Iran Univ Sci & Technol, Tehran, Iran
[2] Amirkabir Univ Technol, Tehran, Iran
关键词
PERIODIC-ORBITS; CHAOTIC SYSTEMS; NORMAL-FORM; INTERNET; ALGORITHM; CRITERIA;
D O I
10.1088/1751-8113/42/39/395102
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper deals with the problem of Hopf bifurcation control for a class of nonlinear time-delay systems. A dynamic delayed feedback control method is utilized for stabilizing unstable fixed points near Hopf bifurcation. Using a linear stability analysis, we show that under certain conditions of the control parameters, and without changing the operating point of the system, the onset of Hopf bifurcation is delayed. Meanwhile, by applying the center manifold theorem and the normal form theory, we obtain formulas for determining the direction of the Hopf bifurcation and the stability of bifurcating periodic solutions of the closed loop system. Numerical simulations are given to justify the validity of the analytical results for the system controlled by the proposed method.
引用
收藏
页数:23
相关论文
共 48 条
[1]  
ATHURALIYA S, 1999, P IEEE GLOBECOM, V3, P1747
[2]   Delayed feedback control of chaos:: Bifurcation analysis -: art. no. 016222 [J].
Balanov, AG ;
Janson, NB ;
Schöll, E .
PHYSICAL REVIEW E, 2005, 71 (01)
[3]   Stability of periodic orbits controlled by time-delay feedback [J].
Bleich, ME ;
Socolar, JES .
PHYSICS LETTERS A, 1996, 210 (1-2) :87-94
[4]   Linear time-delay feedback control of a pathological rhythm in a cardiac conduction model [J].
Brandt, ME ;
Shih, HT ;
Chen, GR .
PHYSICAL REVIEW E, 1997, 56 (02) :R1334-R1337
[5]   Bifurcation control: Theories, methods, and applications [J].
Chen, GR ;
Moiola, JL ;
Wang, HO .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2000, 10 (03) :511-548
[6]   Another limitation of DFC when stabilizing unstable fixed points of continuous chaotic systems [J].
Chen, MY ;
Han, ZZ ;
Shang, Y .
PHYSICS LETTERS A, 2003, 311 (06) :501-503
[7]   Hopf bifurcation control for an internet congestion model [J].
Chen, Z ;
Yu, P .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2005, 15 (08) :2643-2651
[8]   Conversion of stability in systems close to a Hopf bifurcation by time-delayed coupling [J].
Choe, Chol-Ung ;
Flunkert, Valentin ;
Hoevel, Philipp ;
Benner, Hartmut ;
Schoell, Eckehard .
PHYSICAL REVIEW E, 2007, 75 (04)
[9]   DISCRETE DELAY, DISTRIBUTED DELAY AND STABILITY SWITCHES [J].
COOKE, KL ;
GROSSMAN, Z .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1982, 86 (02) :592-627
[10]   On the Lambert W function [J].
Corless, RM ;
Gonnet, GH ;
Hare, DEG ;
Jeffrey, DJ ;
Knuth, DE .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 1996, 5 (04) :329-359