Image-based Classification of Tumor Type and Growth Rate using Machine Learning: a preclinical study

被引:32
作者
Tang, Tien T. [1 ,2 ]
Zawaski, Janice A. [2 ]
Francis, Kathleen N. [1 ]
Qutub, Amina A. [1 ]
Gaber, M. Waleed [1 ,2 ]
机构
[1] Rice Univ, Dept Bioengn, 6500 Main St,Suite 1030, Houston, TX 77030 USA
[2] Baylor Coll Med, Dan L Duncan Canc Ctr, Hematol Oncol Sect, Dept Pediat, 1102 Bates St,Suite 200, Houston, TX 77030 USA
关键词
HIGH-GRADE GLIOMAS; TEXTURE ANALYSIS; POSTOPERATIVE CHEMOTHERAPY; TEST-RETEST; GLIOBLASTOMA; FEATURES; MEDULLOBLASTOMA; VARIABILITY; SURROGATES; DIFFUSION;
D O I
10.1038/s41598-019-48738-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Medical images such as magnetic resonance (MR) imaging provide valuable information for cancer detection, diagnosis, and prognosis. In addition to the anatomical information these images provide, machine learning can identify texture features from these images to further personalize treatment. This study aims to evaluate the use of texture features derived from T-1-weighted post contrast scans to classify different types of brain tumors and predict tumor growth rate in a preclinical mouse model. To optimize prediction models this study uses varying gray-level co-occurrence matrix (GLCM) sizes, tumor region selection and different machine learning models. Using a random forest classification model with a GLCM of size 512 resulted in 92%, 91%, and 92% specificity, and 89%, 85%, and 73% sensitivity for GL261 (mouse glioma), U87 (human glioma) and Daoy (human medulloblastoma), respectively. A tenfold cross-validation of the classifier resulted in 84% accuracy when using the entire tumor volume for feature extraction and 74% accuracy for the central tumor region. A two-layer feedforward neural network using the same features is able to predict tumor growth with 16% mean squared error. Broadly applicable, these predictive models can use standard medical images to classify tumor type and predict tumor growth, with model performance, varying as a function of GLCM size, tumor region, and tumor type.
引用
收藏
页数:10
相关论文
共 47 条
[1]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[2]  
[Anonymous], 2016, SCI REP UK
[3]  
Bakas S., 2017, Cancer Imag Arch, DOI [DOI 10.7937/K9/TCIA.2017.KLXWJJ1Q, 10.7937/K9/TCIA.2017.GJQ7R0EF]
[4]   Data Descriptor: Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features [J].
Bakas, Spyridon ;
Akbari, Hamed ;
Sotiras, Aristeidis ;
Bilello, Michel ;
Rozycki, Martin ;
Kirby, Justin S. ;
Freymann, John B. ;
Farahani, Keyvan ;
Davatzikos, Christos .
SCIENTIFIC DATA, 2017, 4
[5]   In Vivo Detection of EGFRvIII in Glioblastoma via Perfusion Magnetic Resonance Imaging Signature Consistent with Deep Peritumoral Infiltration: The φ-Index [J].
Bakas, Spyridon ;
Akbari, Hamed ;
Pisapia, Jared ;
Martinez-Lage, Maria ;
Rozycki, Martin ;
Rathore, Saima ;
Dahmane, Nadia ;
O'Rourke, Donald M. ;
Davatzikos, Christos .
CLINICAL CANCER RESEARCH, 2017, 23 (16) :4724-4734
[6]   Test-Retest Reproducibility Analysis of Lung CT Image Features [J].
Balagurunathan, Yoganand ;
Kumar, Virendra ;
Gu, Yuhua ;
Kim, Jongphil ;
Wang, Hua ;
Liu, Ying ;
Goldgof, Dmitry B. ;
Hall, Lawrence O. ;
Korn, Rene ;
Zhao, Binsheng ;
Schwartz, Lawrence H. ;
Basu, Satrajit ;
Eschrich, Steven ;
Gatenby, Robert A. ;
Gillies, Robert J. .
JOURNAL OF DIGITAL IMAGING, 2014, 27 (06) :805-823
[7]   Classical Mathematical Models for Description and Prediction of Experimental Tumor Growth [J].
Benzekry, Sebastien ;
Lamont, Clare ;
Beheshti, Afshin ;
Tracz, Amanda ;
Ebos, John M. L. ;
Hlatky, Lynn ;
Hahnfeldt, Philip .
PLOS COMPUTATIONAL BIOLOGY, 2014, 10 (08)
[8]   Breast cancer - one term, many entities? [J].
Bertos, Nicholas R. ;
Park, Morag .
JOURNAL OF CLINICAL INVESTIGATION, 2011, 121 (10) :3789-3796
[9]   Epidermal Growth Factor Receptor Extracellular Domain Mutations in Glioblastoma Present Opportunities for Clinical Imaging and Therapeutic Development [J].
Binder, Zev A. ;
Thorne, Amy Haseley ;
Bakas, Spyridon ;
Wileyto, E. Paul ;
Bilello, Michel ;
Akbari, Hamed ;
Rathore, Saima ;
Ha, Sung Min ;
Zhang, Logan ;
Ferguson, Cole J. ;
Dahiya, Sonika ;
Bi, Wenya Linda ;
Reardon, David A. ;
Idbaih, Ahmed ;
Felsberg, Joerg ;
Hentschel, Bettina ;
Weller, Michael ;
Bagley, Stephen J. ;
Morrissette, Jennifer J. D. ;
Nasrallah, MacLean P. ;
Ma, Jianhui ;
Zanca, Ciro ;
Scott, Andrew M. ;
Orellana, Laura ;
Davatzikos, Christos ;
Furnari, Frank B. ;
O'Rourke, Donald M. .
CANCER CELL, 2018, 34 (01) :163-+
[10]   Haralick texture features from apparent diffusion coefficient (ADC) MRI images depend on imaging and pre-processing parameters [J].
Brynolfsson, Patrik ;
Nilsson, David ;
Torheim, Turid ;
Asklund, Thomas ;
Karlsson, Camilla Thellenberg ;
Trygg, Johan ;
Nyholm, Tufve ;
Garpebring, Anders .
SCIENTIFIC REPORTS, 2017, 7