A characteristic operator function for the class of n-hypercontractions

被引:38
作者
Olofsson, Anders
机构
[1] SE-113 32 Stockholm, Falugatan 22
关键词
characteristic operator function; n-hypercontraction; wandering subspace; standard weighted Bergman space; reproducing kernel function;
D O I
10.1016/j.jfa.2006.03.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a class of bounded linear operators on Hilbert space called n-hypercontractions which relates naturally to adjoint shift operators on certain vector-valued standard weighted Bergman spaces on the unit disc. In the context of n-hypercontractions in the class C-0. we introduce a counterpart to the so-called characteristic operator function for a contraction operator. This generalized characteristic operator function W-n,W-T is an operator-valued analytic function in the unit disc whose values are operators between two Hilbert spaces of defect type. Using an operator-valued function of the form W-n,W-T, we parametrize the wandering subspace for a general shift invariant subspace of the corresponding vector-valued standard weighted Bergman space. The operator-valued analytic function W-n,W-T is shown to act as a contractive multiplier from the Hardy space into the associated standard weighted Bergman space. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:517 / 545
页数:29
相关论文
共 27 条
[1]  
AGLER J, 1985, J OPERAT THEOR, V13, P203
[2]  
Agler J., 1982, Integral Equ. Oper. Theory, V5, P608, DOI DOI 10.1007/BF01694057
[3]   Beurling's theorem for the Bergman space [J].
Aleman, A ;
Richter, S ;
Sundberg, C .
ACTA MATHEMATICA, 1996, 177 (02) :275-310
[4]  
Ambrozie CG, 2002, J OPERAT THEOR, V47, P287
[5]   INVARIANT SUBSPACES, DILATION THEORY, AND THE STRUCTURE OF THE PREDUAL OF A DUAL ALGEBRA .1. [J].
APOSTOL, C ;
BERCOVICI, H ;
FOIAS, C ;
PEARCY, C .
JOURNAL OF FUNCTIONAL ANALYSIS, 1985, 63 (03) :369-404
[6]   Analytic models for commuting operator tuples on bounded symmetric domains [J].
Arazy, J ;
Englis, M .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 355 (02) :837-864
[7]   THEORY OF REPRODUCING KERNELS [J].
ARONSZAJN, N .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1950, 68 (MAY) :337-404
[8]   Constrained von Neumann inequalities [J].
Badea, C ;
Cassier, G .
ADVANCES IN MATHEMATICS, 2002, 166 (02) :260-297
[9]  
BALL JA, 1991, OPER THEOR, V50, P93
[10]  
Gohberg I, 1993, CLASSES LINEAR OPERA