Amorphous FeOOH Quantum Dots Assembled Mesoporous Film Anchored on Graphene Nanosheets with Superior Electrochemical Performance for Supercapacitors

被引:478
作者
Liu, Jiaqi [1 ,2 ]
Zheng, Mingbo [3 ]
Shi, Xiaoqin [1 ]
Zeng, Haibo [1 ]
Xia, Hui [1 ,2 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Mat Sci & Engn, Xiaolingwei 200, Nanjing 210094, Jiangsu, Peoples R China
[2] Nanjing Univ Sci & Technol, Herbert Gleiter Inst Nanosci, Xiaolingwei 200, Nanjing 210094, Jiangsu, Peoples R China
[3] Nanjing Univ, Sch Elect Sci & Engn, Nanjing Natl Lab Microstruct, Nanjing 210093, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
amorphous; iron oxyhydroxide; mesoporous; quantum dots; supercapacitors; ENERGY-STORAGE DEVICES; ASYMMETRIC SUPERCAPACITORS; ELECTRODE MATERIALS; LITHIUM STORAGE; ALPHA-FE2O3; NANOSTRUCTURES; PSEUDOCAPACITOR MATERIALS; NANOWIRE ARRAYS; ANODE MATERIAL; ION BATTERIES; CARBON CLOTH;
D O I
10.1002/adfm.201504019
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Previous research on iron oxides/hydroxides has focused on the crystalline rather than the amorphous phase, despite that the latter could have superior electrochemical activity due to the disordered structure. In this work, a simple and scalable synthesis route is developed to prepare amorphous FeOOH quantum dots (QDs) and FeOOH QDs/graphene hybrid nanosheets. The hybrid nanosheets possess a unique heterostructure, comprising a continuous mesoporous FeOOH nanofilm tightly anchored on the graphene surface. The amorphous FeOOH/graphene hybrid nanosheets exhibit superior pseudocapacitive performance, which largely outperforms the crystalline iron oxides/hydroxides-based materials. In the voltage range between -0.8 and 0 V versus Ag/AgCl, the amorphous FeOOH/graphene composite electrode exhibits a large specific capacitance of about 365 F g(-1), outstanding cycle performance (89.7% capacitance retention after 20 000 cycles), and excellent rate capability (189 F g(-1) at a current density of 128 A g(-1)). When the lower cutoff voltage is extended to -1.0 and -1.25 V, the specific capacitance of the amorphous FeOOH/graphene composite electrode can be increased to 403 and 1243 F g(-1), respectively, which, however, compromises the rate capability and cycle performance. This work brings new opportunities to design high-performance electrode materials for supercapacitors, especially for amorphous oxides/hydroxides-based materials.
引用
收藏
页码:919 / 930
页数:12
相关论文
共 52 条
[1]   Amorphous Vanadium Oxide Matrixes Supporting Hierarchical Porous Fe3O4/Graphene Nanowires as a High-Rate Lithium Storage Anode [J].
An, Qinyou ;
Lv, Fan ;
Liu, Qiuqi ;
Han, Chunhua ;
Zhao, Kangning ;
Sheng, Jinzhi ;
Wei, Qiulong ;
Yan, Mengyu ;
Mai, Liqiang .
NANO LETTERS, 2014, 14 (11) :6250-6256
[2]   Amorphous FeOOH Oxygen Evolution Reaction Catalyst for Photoelectrochemical Water Splitting [J].
Chemelewski, William D. ;
Lee, Heung-Chan ;
Lin, Jung-Fu ;
Bard, Allen J. ;
Mullins, C. Buddie .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (07) :2843-2850
[3]   Metal-like fluorine-doped β-FeOOH nanorods grown on carbon cloth for scalable high-performance supercapacitors [J].
Chen, Li-Feng ;
Yu, Zi-You ;
Wang, Jia-Jun ;
Li, Qun-Xiang ;
Tan, Zi-Qi ;
Zhu, Yan-Wu ;
Yu, Shu-Hong .
NANO ENERGY, 2015, 11 :119-128
[4]   In situ hydrothermal growth of ferric oxides on carbon cloth for low-cost and scalable high-energy-density supercapacitors [J].
Chen, Li-Feng ;
Yu, Zi-You ;
Ma, Xiao ;
Li, Zhe-Yang ;
Yu, Shu-Hong .
NANO ENERGY, 2014, 9 :345-354
[5]   Novel Iron Oxyhydroxide Lepidocrocite Nanosheet as Ultrahigh Power Density Anode Material for Asymmetric Supercapacitors [J].
Chen, Ying-Chu ;
Lin, Yan-Gu ;
Hsu, Yu-Kuei ;
Yen, Shi-Chern ;
Chen, Kuei-Hsien ;
Chen, Li-Chyong .
SMALL, 2014, 10 (18) :3803-3810
[6]  
Djowe A. T., 2015, APPL CATAL B-ENVIRON, V176, P99
[7]   Preparation of functionalized graphene sheets by a low-temperature thermal exfoliation approach and their electrochemical supercapacitive behaviors [J].
Du, Qinglai ;
Zheng, Mingbo ;
Zhang, Lifeng ;
Wang, Yongwen ;
Chen, Jinhua ;
Xue, Luping ;
Dai, Weijie ;
Ji, Guangbin ;
Cao, Jieming .
ELECTROCHIMICA ACTA, 2010, 55 (12) :3897-3903
[8]   Comparison of the rate capability of nanostructured amorphous and anatase TiO2 for lithium insertion using anodic TiO2 nanotube arrays [J].
Fang, Hai-Tao ;
Liu, Min ;
Wang, Da-Wei ;
Sun, Tao ;
Guan, Dong-Sheng ;
Li, Feng ;
Zhou, Jigang ;
Sham, Tsun-Kong ;
Cheng, Hui-Ming .
NANOTECHNOLOGY, 2009, 20 (22)
[9]   Iron Oxide-Decorated Carbon for Supercapacitor Anodes with Ultrahigh Energy Density and Outstanding Cycling Stability [J].
Guan, Cao ;
Liu, Jilei ;
Wang, Yadong ;
Mao, Lu ;
Fan, Zhanxi ;
Shen, Zexiang ;
Zhang, Hua ;
Wang, John .
ACS NANO, 2015, 9 (05) :5198-5207
[10]   Tailored graphene systems for unconventional applications in energy conversion and storage devices [J].
Hu, Chuangang ;
Song, Long ;
Zhang, Zhipan ;
Chen, Nan ;
Feng, Zhihai ;
Qu, Liangti .
ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (01) :31-54