Solving large-scale sparse semidefinite programs for combinatorial optimization

被引:178
作者
Benson, SJ [3 ]
Ye, YY
Zhang, X
机构
[1] Univ Iowa, Dept Management Sci, Iowa City, IA 52242 USA
[2] Huazhong Univ Sci & Technol, Sch Mech Engn, Wuhan 430074, Hubei, Peoples R China
[3] Univ Iowa, Computat Optimizat Lab, Iowa City, IA 52242 USA
关键词
semidefinite programming; dual potential reduction algorithm; maximum cut problem;
D O I
10.1137/S1052623497328008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a dual-scaling interior-point algorithm and show how it exploits the structure and sparsity of some large-scale problems. We solve the positive semidefinite relaxation of combinatorial and quadratic optimization problems subject to boolean constraints. We report the first computational results of interior-point algorithms for approximating maximum cut semidefinite programs with dimension up to 3,000.
引用
收藏
页码:443 / 461
页数:19
相关论文
共 36 条