Solving large-scale sparse semidefinite programs for combinatorial optimization

被引:180
作者
Benson, SJ [3 ]
Ye, YY
Zhang, X
机构
[1] Univ Iowa, Dept Management Sci, Iowa City, IA 52242 USA
[2] Huazhong Univ Sci & Technol, Sch Mech Engn, Wuhan 430074, Hubei, Peoples R China
[3] Univ Iowa, Computat Optimizat Lab, Iowa City, IA 52242 USA
关键词
semidefinite programming; dual potential reduction algorithm; maximum cut problem;
D O I
10.1137/S1052623497328008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a dual-scaling interior-point algorithm and show how it exploits the structure and sparsity of some large-scale problems. We solve the positive semidefinite relaxation of combinatorial and quadratic optimization problems subject to boolean constraints. We report the first computational results of interior-point algorithms for approximating maximum cut semidefinite programs with dimension up to 3,000.
引用
收藏
页码:443 / 461
页数:19
相关论文
共 36 条
[1]   CORRECTION [J].
ADLER, I .
MATHEMATICAL PROGRAMMING, 1991, 50 (03) :415-415
[2]  
Alizadeh F, 1994, 659 NEW YORK U COMP
[3]  
ALIZADEH F, 1991, THESIS U MINNESOTA M
[4]  
ANSTREICHER KM, 1996, LONG STEP PATH FOLLO
[5]  
Atkinson K. E., 1989, INTRO NUMERICAL ANAL
[6]  
DUFF IS, 1997, STATE ART NUMERICAL, P27
[7]   A COMPUTATIONAL STUDY OF GRAPH PARTITIONING [J].
FALKNER, J ;
RENDL, F ;
WOLKOWICZ, H .
MATHEMATICAL PROGRAMMING, 1994, 66 (02) :211-239
[8]   Semidefinite programming relaxation for nonconvex quadratic programs [J].
Fujie, T ;
Kojima, M .
JOURNAL OF GLOBAL OPTIMIZATION, 1997, 10 (04) :367-380
[9]  
FUJISAWA K, 1997, B324 TOK I TECHN DEP
[10]  
FUJISAWA K, 1997, B330 TOK I TECHN DEP