Development and testing of Polar Weather Research and Forecasting model: 2. Arctic Ocean

被引:129
作者
Bromwich, David H. [1 ,2 ]
Hines, Keith M. [1 ]
Bai, Le-Sheng [1 ]
机构
[1] Ohio State Univ, Byrd Polar Res Ctr, Polar Meteorol Grp, Columbus, OH 43210 USA
[2] Ohio State Univ, Dept Geog, Atmospher Sci Program, Columbus, OH 43210 USA
基金
美国国家科学基金会;
关键词
SURFACE HEAT-BUDGET; SEA-ICE; PART I; MM5; SIMULATIONS; KATABATIC WINDS; BOUNDARY-LAYER; CLIMATE MODELS; CLOUD; ALBEDO; SHEBA;
D O I
10.1029/2008JD010300
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
A version of the state-of-the-art Weather Research and Forecasting model (WRF) has been developed for polar applications. The model known as "Polar WRF'' is tested over the Arctic Ocean with a western Arctic grid using 25-km resolution. The model is based upon WRF version 2.2, with improvements to the Noah land surface model and the snowpack treatment. The ocean surface treatment is modified to include fractional sea ice. Simulations consist of a series of 48-h integrations initialized daily at 0000 UTC. The initial 24 h are taken as model spin-up time for the atmospheric hydrology and boundary layer processes. Arctic conditions are simulated for the selected months: January 1998, June 1998, and August 1998 representing midwinter, early summer, and late summer conditions, respectively, from the Surface Heat Budget of the Arctic (SHEBA) study. The albedo of sea ice is specified as a function of time and latitude for June and as a function of time for August. Simulation results are compared with observations of the drifting ice station SHEBA in the Arctic ice pack. Polar WRF simulations show good agreement with observations for all three months. Some differences between the simulations and observation occur owing to apparent errors in the synoptic forecasts and the representation of clouds. Nevertheless, the biases in the simulated fields appear to be small, and Polar WRF appears to be a very good tool for studies of Arctic Ocean meteorology.
引用
收藏
页数:22
相关论文
共 82 条
[1]  
ACIA, 2005, IMP WARM CLIM ARCT C
[2]  
[Anonymous], BOOTSTRAP SEA ICE CO
[3]  
AVISSAR R, 1989, MON WEATHER REV, V117, P2113, DOI 10.1175/1520-0493(1989)117<2113:APOHLS>2.0.CO
[4]  
2
[5]   A tropospheric assessment of the ERA-40, NCEP, and JRA-25 global reanalyses in the polar regions [J].
Bromwich, David H. ;
Fogt, Ryan L. ;
Hodges, Kevin I. ;
Walsh, John E. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2007, 112 (D10)
[6]   Evaluation of the NCEP-NCAR and ECMWF 15- and 40-Yr Reanalyses using rawinsonde data from two independent Arctic field experiments [J].
Bromwich, DH ;
Wang, SH .
MONTHLY WEATHER REVIEW, 2005, 133 (12) :3562-3578
[7]   High-resolution regional climate simulations over Iceland using Polar MM5 [J].
Bromwich, DH ;
Bai, LH ;
Bjarnason, GG .
MONTHLY WEATHER REVIEW, 2005, 133 (12) :3527-3547
[8]   LGM summer climate on the southern margin of the Laurentide Ice Sheet: Wet or dry? [J].
Bromwich, DH ;
Toracinta, ER ;
Oglesby, RJ ;
Fastook, JL ;
Hughes, TJ .
JOURNAL OF CLIMATE, 2005, 18 (16) :3317-3338
[9]  
Bromwich DH, 2003, MON WEATHER REV, V131, P412, DOI 10.1175/1520-0493(2003)131<0412:AMPSAA>2.0.CO
[10]  
2