Unsupervised PolSAR Image Classification Using Discriminative Clustering

被引:44
作者
Bi, Haixia [1 ]
Sun, Jian [1 ]
Xu, Zongben [1 ]
机构
[1] Xi An Jiao Tong Univ, Inst Informat & Syst Sci, Xian 710049, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2017年 / 55卷 / 06期
基金
中国国家自然科学基金;
关键词
Discriminative clustering; Markov random field (MRF); polarimetric synthetic aperture radar (PolSAR) image classification; softmax regression (SR) model; SCATTERING MODEL; K-DISTRIBUTION; ENTROPY; DECOMPOSITION; ALGORITHM; COVER;
D O I
10.1109/TGRS.2017.2675906
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
This paper presents a novel unsupervised image classification method for polarimetric synthetic aperture radar (PolSAR) data. The proposed method is based on a discriminative clustering framework that explicitly relies on a discriminative supervised classification technique to perform unsupervised clustering. To implement this idea, we design an energy function for unsupervised PolSAR image classification by combining a supervised softmax regression model with a Markov random field smoothness constraint. In this model, both the pixelwise class labels and classifiers are taken as unknown variables to be optimized. Starting from the initialized class labels generated by Cloude-Pottier decomposition and K-Wishart distribution hypothesis, we iteratively optimize the classifiers and class labels by alternately minimizing the energy function with respect to them. Finally, the optimized class labels are taken as the classification result, and the classifiers for different classes are also derived as a side effect. We apply this approach to real PolSAR benchmark data. Extensive experiments justify that our approach can effectively classify the PolSAR image in an unsupervised way and produce higher accuracies than the compared state-of-the-art methods.
引用
收藏
页码:3531 / 3544
页数:14
相关论文
共 57 条
[51]   Deorientation theory of polarimetric scattering targets and application to terrain surface classification [J].
Xu, F ;
Jin, YQ .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2005, 43 (10) :2351-2364
[52]   Polarimetric-Anisotropic Decomposition and Anisotropic Entropies of High-Resolution SAR Images [J].
Xu, Feng ;
Li, Yongchen ;
Jin, Ya-Qiu .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (09) :5467-5482
[53]   Four-component scattering model for polarimetric SAR image decomposition [J].
Yamaguchi, Y ;
Moriyama, T ;
Ishido, M ;
Yamada, H .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2005, 43 (08) :1699-1706
[54]   K-DISTRIBUTION AND POLARIMETRIC TERRAIN RADAR CLUTTER [J].
YUEH, SH ;
KONG, JA ;
JAO, JK ;
SHIN, RT ;
NOVAK, LM .
JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 1989, 3 (08) :747-768
[55]   Stacked Sparse Autoencoder in PolSAR Data Classification Using Local Spatial Information [J].
Zhang, Lu ;
Ma, Wenping ;
Zhang, Dan .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (09) :1359-1363
[56]   Spectral clustering ensemble applied to SAR image segmentation [J].
Zhang, Xiangrong ;
Hao, Licheng ;
Liu, Fang ;
Bo, Liefeng ;
Gong, Maoguo .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (07) :2126-2136
[57]   Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization [J].
Zhu, CY ;
Byrd, RH ;
Lu, PH ;
Nocedal, J .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1997, 23 (04) :550-560